Zuhal Y Hamd, Huda I Almohammed, Elbagir Mansour, Abdoelrahman Hassan A B, Awadia Gareeballah
{"title":"Optimizing Radiation Risk Assessment in CT Imaging: Establishing Institutional Diagnostic Reference Levels and Personalized Dose Strategies for Chest, Abdomen, and Pelvis Scans.","authors":"Zuhal Y Hamd, Huda I Almohammed, Elbagir Mansour, Abdoelrahman Hassan A B, Awadia Gareeballah","doi":"10.3390/tomography11060065","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> As a diagnostic radiology procedure, computed tomography (CT) contributes to patient radiation exposure; hence, it deserves special consideration. The use of diagnostic reference levels (DRLs) is an efficient way to optimize patient radiation dosage. The computed tomography dose index volume (CTDIv) and the dose-length product (DLP) help to measure DRLs. <b>Methods:</b> A retrospective analysis was conducted on 106 patients (43.9% male, 56.1% female; mean age of 48.18 years) who underwent computed tomography chest, abdomen, and pelvis (CT CAP) scans using a Toshiba Aquilion Prime 160-slice CT scanner. Data included patient demographics, CT parameters (mA, tube rotation time, pitch, slice thickness, and slice count), and dose indices: dose length product (DLP), computed tomography dose index volume (CTDIvol), and effective dose. Cancer risks were calculated based on effective dose, patient demographics, and scan parameters. <b>Results:</b> This study demonstrated that the mean values for DLP, CTDIvol, and effective dose were 1719.64 ± 488.45 mGy·cm, 25.97 ± 6.96 mGy, and 27.5 ± 7.82 mSv, respectively. Cancer risk estimates ranged from 0.048% to 1.58%, with higher risks observed for females, younger patients. Significant correlations were found between dose indices and technical parameters, including pitch, kVp, tube rotation time, and slice thickness (<i>p</i> < 0.005). <b>Conclusions:</b> The mean values for DLP, CTDIvol, and effective dose for abdominopelvic scans were higher than those found in previous studies, with significant correlation of weight on these values. Optimizing CT protocols and establishing DRLs tailored to clinical indications are critical for minimizing radiation exposure and enhancing patient safety.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"11 6","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12196703/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography11060065","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: As a diagnostic radiology procedure, computed tomography (CT) contributes to patient radiation exposure; hence, it deserves special consideration. The use of diagnostic reference levels (DRLs) is an efficient way to optimize patient radiation dosage. The computed tomography dose index volume (CTDIv) and the dose-length product (DLP) help to measure DRLs. Methods: A retrospective analysis was conducted on 106 patients (43.9% male, 56.1% female; mean age of 48.18 years) who underwent computed tomography chest, abdomen, and pelvis (CT CAP) scans using a Toshiba Aquilion Prime 160-slice CT scanner. Data included patient demographics, CT parameters (mA, tube rotation time, pitch, slice thickness, and slice count), and dose indices: dose length product (DLP), computed tomography dose index volume (CTDIvol), and effective dose. Cancer risks were calculated based on effective dose, patient demographics, and scan parameters. Results: This study demonstrated that the mean values for DLP, CTDIvol, and effective dose were 1719.64 ± 488.45 mGy·cm, 25.97 ± 6.96 mGy, and 27.5 ± 7.82 mSv, respectively. Cancer risk estimates ranged from 0.048% to 1.58%, with higher risks observed for females, younger patients. Significant correlations were found between dose indices and technical parameters, including pitch, kVp, tube rotation time, and slice thickness (p < 0.005). Conclusions: The mean values for DLP, CTDIvol, and effective dose for abdominopelvic scans were higher than those found in previous studies, with significant correlation of weight on these values. Optimizing CT protocols and establishing DRLs tailored to clinical indications are critical for minimizing radiation exposure and enhancing patient safety.
TomographyMedicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍:
TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine.
Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians.
Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.