Empowering plant epigenetics to breed resilience of crops: From nucleolar dominance to transgenerational epigenetic inheritance.

IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY
Plant Genome Pub Date : 2025-06-01 DOI:10.1002/tpg2.70064
Zengjian Jeffrey Chen
{"title":"Empowering plant epigenetics to breed resilience of crops: From nucleolar dominance to transgenerational epigenetic inheritance.","authors":"Zengjian Jeffrey Chen","doi":"10.1002/tpg2.70064","DOIUrl":null,"url":null,"abstract":"<p><p>Advancements in genomic and epigenetic research in both plants and animals have transformed breeding methods and biotechnological strategies for crop improvement, particularly in the face of extreme weather challenges. These breakthroughs in plant biology and agriculture have laid a strong foundation for ensuring food security, promoting environmental sustainability, enhancing nutritional health, and driving basic science advances, as exemplified by Mendel's discovery of genetic principles and McClintock's discovery of transposable elements. Plant epigenetics has held a transformative potential for developing high-yielding and resilient crops. In this review, I will examine various relevant epigenetic phenomena, including nucleolar dominance, paramutation, imprinting, somaclonal variation, and transgenerational epigenetic inheritance, to explore strategies for overcoming yield limitations in an increasingly volatile climate. This perspective aligns with the vision for plant breeding and sustainable agriculture championed by the late Professor Ronald L. Phillips.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":"18 2","pages":"e70064"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188179/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/tpg2.70064","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Advancements in genomic and epigenetic research in both plants and animals have transformed breeding methods and biotechnological strategies for crop improvement, particularly in the face of extreme weather challenges. These breakthroughs in plant biology and agriculture have laid a strong foundation for ensuring food security, promoting environmental sustainability, enhancing nutritional health, and driving basic science advances, as exemplified by Mendel's discovery of genetic principles and McClintock's discovery of transposable elements. Plant epigenetics has held a transformative potential for developing high-yielding and resilient crops. In this review, I will examine various relevant epigenetic phenomena, including nucleolar dominance, paramutation, imprinting, somaclonal variation, and transgenerational epigenetic inheritance, to explore strategies for overcoming yield limitations in an increasingly volatile climate. This perspective aligns with the vision for plant breeding and sustainable agriculture championed by the late Professor Ronald L. Phillips.

赋予植物表观遗传学以培育作物的抗逆性:从核仁显性到跨代表观遗传。
动植物基因组学和表观遗传学研究的进展已经改变了作物改良的育种方法和生物技术策略,特别是在面对极端天气挑战时。这些植物生物学和农业方面的突破为确保粮食安全、促进环境可持续性、增强营养健康和推动基础科学进步奠定了坚实的基础,例如孟德尔发现的遗传原理和麦克林托克发现的转座因子。植物表观遗传学在培育高产和抗灾作物方面具有变革性的潜力。在这篇综述中,我将研究各种相关的表观遗传现象,包括核仁显性、参数化、印记、体细胞无性系变异和跨代表观遗传,以探索在日益动荡的气候中克服产量限制的策略。这一观点与已故罗纳德·l·菲利普斯教授倡导的植物育种和可持续农业的愿景一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Genome
Plant Genome PLANT SCIENCES-GENETICS & HEREDITY
CiteScore
6.00
自引率
4.80%
发文量
93
审稿时长
>12 weeks
期刊介绍: The Plant Genome publishes original research investigating all aspects of plant genomics. Technical breakthroughs reporting improvements in the efficiency and speed of acquiring and interpreting plant genomics data are welcome. The editorial board gives preference to novel reports that use innovative genomic applications that advance our understanding of plant biology that may have applications to crop improvement. The journal also publishes invited review articles and perspectives that offer insight and commentary on recent advances in genomics and their potential for agronomic improvement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信