{"title":"Phospholipid biogenesis maintains neuronal integrity during aging and axon regeneration.","authors":"Seungmee Park, Yishi Jin, Andrew D Chisholm","doi":"10.1093/genetics/iyaf122","DOIUrl":null,"url":null,"abstract":"<p><p>Neurons maintain their morphology over prolonged periods of adult life with limited regenerative capacity. Among the various factors that shape neuronal morphology, lipids function as membrane components, signaling molecules, and regulators of synaptic plasticity. Here, we tested genes involved in phospholipid biosynthesis and identified their roles in axon regrowth and maintenance. CEPT-2 and EPT-1 are enzymes catalyzing the final steps in the de novo phospholipid synthesis (Kennedy) pathway. Loss of function mutants of cept-2 or ept-1 show reduced axon regrowth and failure to maintain axon morphology. We demonstrate that CEPT-2 is required cell-autonomously to prevent age-related axonal morphology defects. We further investigated genetic interactions of cept-2 or ept-1 with dip-2, a conserved regulator of lipid metabolism that affects axon morphology maintenance and regrowth after injury. Loss of function in dip-2 led to suppression of axon regrowth defects observed in either cept-2 or ept-2 mutants, suggesting that DIP-2 acts to counterbalance phospholipid synthesis. Our findings reveal the genetic regulation of lipid metabolism as critical for axon maintenance following injury and during aging.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf122","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Neurons maintain their morphology over prolonged periods of adult life with limited regenerative capacity. Among the various factors that shape neuronal morphology, lipids function as membrane components, signaling molecules, and regulators of synaptic plasticity. Here, we tested genes involved in phospholipid biosynthesis and identified their roles in axon regrowth and maintenance. CEPT-2 and EPT-1 are enzymes catalyzing the final steps in the de novo phospholipid synthesis (Kennedy) pathway. Loss of function mutants of cept-2 or ept-1 show reduced axon regrowth and failure to maintain axon morphology. We demonstrate that CEPT-2 is required cell-autonomously to prevent age-related axonal morphology defects. We further investigated genetic interactions of cept-2 or ept-1 with dip-2, a conserved regulator of lipid metabolism that affects axon morphology maintenance and regrowth after injury. Loss of function in dip-2 led to suppression of axon regrowth defects observed in either cept-2 or ept-2 mutants, suggesting that DIP-2 acts to counterbalance phospholipid synthesis. Our findings reveal the genetic regulation of lipid metabolism as critical for axon maintenance following injury and during aging.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.