{"title":"Development of an anomaly detection system for Gibbs artifact identification in amyloid PET imaging.","authors":"Mitsuru Sato, Hiromitsu Daisaki, Haruyuki Watanabe, Saaya Isogai, Manami Shiga, Yasuhiko Ikari, Keisuke Tsuda, Kenji Hirata, Ukihide Tateishi, Kazuaki Mori, Makoto Hosono, Hirofumi Fujii","doi":"10.1007/s12194-025-00928-9","DOIUrl":null,"url":null,"abstract":"<p><p>The PET Imaging Site Qualification Program for amyloid positron emission tomography (PET) in Japan includes visual evaluation of the cylinder phantom. This visual evaluation requires observation of the entire image of the phantom and confirmation of the absence of apparent artifacts. Because the evaluation is visually performed, inter-observer differences might exist among evaluators for difficult cases. Therefore, the workload of the staff who perform approval tasks must be reduced, and objective evaluation methods are needed. Thus, we attempted to develop an artificial-intelligence-based objective method for anomaly detection. Three artificial intelligence methods for anomaly detection were developed, and their accuracy was evaluated using AutoEncoder, AnoGAN, and a method combining feature extraction using AlexNet and a one-class support vector machine. In total, 10,207 normal images from 128 facilities and 594 abnormal images from eight facilities, all of which were submitted as part of application for amyloid PET certification, were used. Group five-fold cross-validation was employed for artificial intelligence training and evaluation. In addition, the performance of each artificial intelligence method was assessed using receiver operating characteristic analysis. The areas under the curve for anomaly detection using AutoEncoder, AnoGAN, and the method combining feature extraction using AlexNet and a one-class support vector machine were 0.80 ± 0.04, 0.77 ± 0.03, and 0.99 ± 0.01, respectively. Artificial intelligence effectively distinguished between normal and abnormal images with high accuracy. In the future, its practical implementation is anticipated to reduce the workload in the approval work for the Japanese site qualification program for amyloid PET.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-025-00928-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
The PET Imaging Site Qualification Program for amyloid positron emission tomography (PET) in Japan includes visual evaluation of the cylinder phantom. This visual evaluation requires observation of the entire image of the phantom and confirmation of the absence of apparent artifacts. Because the evaluation is visually performed, inter-observer differences might exist among evaluators for difficult cases. Therefore, the workload of the staff who perform approval tasks must be reduced, and objective evaluation methods are needed. Thus, we attempted to develop an artificial-intelligence-based objective method for anomaly detection. Three artificial intelligence methods for anomaly detection were developed, and their accuracy was evaluated using AutoEncoder, AnoGAN, and a method combining feature extraction using AlexNet and a one-class support vector machine. In total, 10,207 normal images from 128 facilities and 594 abnormal images from eight facilities, all of which were submitted as part of application for amyloid PET certification, were used. Group five-fold cross-validation was employed for artificial intelligence training and evaluation. In addition, the performance of each artificial intelligence method was assessed using receiver operating characteristic analysis. The areas under the curve for anomaly detection using AutoEncoder, AnoGAN, and the method combining feature extraction using AlexNet and a one-class support vector machine were 0.80 ± 0.04, 0.77 ± 0.03, and 0.99 ± 0.01, respectively. Artificial intelligence effectively distinguished between normal and abnormal images with high accuracy. In the future, its practical implementation is anticipated to reduce the workload in the approval work for the Japanese site qualification program for amyloid PET.
期刊介绍:
The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.