{"title":"[Genetic analysis of six adult patients with Dilated cardiomyopathy and analysis of structural variants].","authors":"Xuesen Liu, Yaoyu Song, Jing Zhang, Huafeng Qiu, Jingjing Sang, Juan Zhang","doi":"10.3760/cma.j.cn511374-20241001-00518","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigate the genetic etiology of six adult patients with Dilated cardiomyopathy (DCM), and analyze the structure of the identified variants, for providing reference for the diagnosis of DCM.</p><p><strong>Methods: </strong>Six adult patients with DCM (patients 1-6) admitted to the Department of Cardiology of Zhumadian Central Hospital from January 2023 to December 2023 were recruited. Clinical data of the patients were retrospectively collected. And 5 mL of peripheral blood was collected from each patient. Pathogenic variants of the patients were detected by whole exome sequencing (WES), and candidate variants were verified by Sanger sequencing. The possible functional significance of the identified missense variants was evaluated using software including SIFT, PolyPhen-2 and Mutation Taster. Specific regions of the MYBPC protein encoded by the MYBPC3 gene from different species were aligned using Mutation Taster. The wild-type and mutant MYBPC proteins were constructed using homologous modeling software MODELLER v10.4 and three-dimensional structures were visualized using PyMOL software. The molecular interaction between MYBPC-C5 domain and myosin with or without the mutation was further analyzed using ZDOCK module in Discovery Studio 2019 software. Pathogenicity ratings for the detected variant sites were performed in accordance with the Standards and Guidelines for the Interpretation of Sequence variants by the American College of Medical Genetics and Genomics (ACMG) (hereafter referred to as the ACMG Guidelines). This study was reviewed and approved by the Ethics Committee of Zhumadian Central Hospital (Approval No. 2022092007).</p><p><strong>Results: </strong>The six DCM patients had typical symptoms of heart failure, and echocardiography showed whole-heart dilation and decreased ventricular wall motion, left ventricular end-diastolic dimension (LVEDD) was 59-74 mm, left ventricular ejection fraction (LVEF) was 35%-43%, and left ventricular fractional shortening (LVFS) was 17%-28%. Variations of the DCM related genes, including a c.98473A>T (p.Lys32825*) variation of the TTN gene and a c.1976T>C (p.Ile659Thr) variation of the MYBPC3 gene, were identified in two patients. Multiple software predicted that both mutations were deleterious. MYBPC3-Ile659Thr mutation affected the highly conserved residue within the C5 domain of MYBPC. Three-dimensional structural analysis of homologous modeling revealed the alterations in amino acid properties and interactions with surrounding amino acids caused by the MYBPC3-Ile659Thr mutation. Further molecular docking analysis showed that the Ile659Thr mutation altered both the hydrogen bond and salt-bridge interactions between the MYBPC-C5 domain and the ligand myosin.</p><p><strong>Conclusion: </strong>Two mutations associated with DCM were identified in this study. The abnormal conformation of the mutant protein further affected its interaction with the ligand myosin, resulting in the phenotype of DCM.</p>","PeriodicalId":39319,"journal":{"name":"中华医学遗传学杂志","volume":"42 4","pages":"433-440"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中华医学遗传学杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3760/cma.j.cn511374-20241001-00518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To investigate the genetic etiology of six adult patients with Dilated cardiomyopathy (DCM), and analyze the structure of the identified variants, for providing reference for the diagnosis of DCM.
Methods: Six adult patients with DCM (patients 1-6) admitted to the Department of Cardiology of Zhumadian Central Hospital from January 2023 to December 2023 were recruited. Clinical data of the patients were retrospectively collected. And 5 mL of peripheral blood was collected from each patient. Pathogenic variants of the patients were detected by whole exome sequencing (WES), and candidate variants were verified by Sanger sequencing. The possible functional significance of the identified missense variants was evaluated using software including SIFT, PolyPhen-2 and Mutation Taster. Specific regions of the MYBPC protein encoded by the MYBPC3 gene from different species were aligned using Mutation Taster. The wild-type and mutant MYBPC proteins were constructed using homologous modeling software MODELLER v10.4 and three-dimensional structures were visualized using PyMOL software. The molecular interaction between MYBPC-C5 domain and myosin with or without the mutation was further analyzed using ZDOCK module in Discovery Studio 2019 software. Pathogenicity ratings for the detected variant sites were performed in accordance with the Standards and Guidelines for the Interpretation of Sequence variants by the American College of Medical Genetics and Genomics (ACMG) (hereafter referred to as the ACMG Guidelines). This study was reviewed and approved by the Ethics Committee of Zhumadian Central Hospital (Approval No. 2022092007).
Results: The six DCM patients had typical symptoms of heart failure, and echocardiography showed whole-heart dilation and decreased ventricular wall motion, left ventricular end-diastolic dimension (LVEDD) was 59-74 mm, left ventricular ejection fraction (LVEF) was 35%-43%, and left ventricular fractional shortening (LVFS) was 17%-28%. Variations of the DCM related genes, including a c.98473A>T (p.Lys32825*) variation of the TTN gene and a c.1976T>C (p.Ile659Thr) variation of the MYBPC3 gene, were identified in two patients. Multiple software predicted that both mutations were deleterious. MYBPC3-Ile659Thr mutation affected the highly conserved residue within the C5 domain of MYBPC. Three-dimensional structural analysis of homologous modeling revealed the alterations in amino acid properties and interactions with surrounding amino acids caused by the MYBPC3-Ile659Thr mutation. Further molecular docking analysis showed that the Ile659Thr mutation altered both the hydrogen bond and salt-bridge interactions between the MYBPC-C5 domain and the ligand myosin.
Conclusion: Two mutations associated with DCM were identified in this study. The abnormal conformation of the mutant protein further affected its interaction with the ligand myosin, resulting in the phenotype of DCM.
期刊介绍:
Chinese Journal of Medical Genetics is a medical journal, founded in 1984, under the supervision of the China Association for Science and Technology, sponsored by the Chinese Medical Association (hosted by Sichuan University), and is now a monthly magazine, which attaches importance to academic orientation, adheres to the scientific, scholarly, advanced, and innovative, and has a certain degree of influence in the industry.
Chinese Journal of Medical Genetics is a journal of Peking University, and is now included in Peking University Journal (Chinese Journal of Humanities and Social Sciences), CSCD Source Journals of Chinese Science Citation Database (with extended version), Statistical Source Journals (China Science and Technology Dissertation Outstanding Journals), Zhi.com (in Chinese), Wipu (in Chinese), Wanfang (in Chinese), CA Chemical Abstracts (U.S.), JST (Japan Science and Technology Science and Technology), and JST (Japan Science and Technology Science and Technology Research Center). ), JST (Japan Science and Technology Agency), Pж (AJ) Abstracts Journal (Russia), Copernicus Index (Poland), Cambridge Scientific Abstracts, Abstracts and Citation Database, Abstracts Magazine, Medical Abstracts, and so on.