Historical Manuscripts Analysis: A Deep Learning System for Writer Identification Using Intelligent Feature Selection with Vision Transformers.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Merouane Boudraa, Akram Bennour, Mouaaz Nahas, Rashiq Rafiq Marie, Mohammed Al-Sarem
{"title":"Historical Manuscripts Analysis: A Deep Learning System for Writer Identification Using Intelligent Feature Selection with Vision Transformers.","authors":"Merouane Boudraa, Akram Bennour, Mouaaz Nahas, Rashiq Rafiq Marie, Mohammed Al-Sarem","doi":"10.3390/jimaging11060204","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying the scriptwriter in historical manuscripts is crucial for historians, providing valuable insights into historical contexts and aiding in solving historical mysteries. This research presents a robust deep learning system designed for classifying historical manuscripts by writer, employing intelligent feature selection and vision transformers. Our methodology meticulously investigates the efficacy of both handcrafted techniques for feature identification and deep learning architectures for classification tasks in writer identification. The initial preprocessing phase involves thorough document refinement using bilateral filtering for denoising and Otsu thresholding for binarization, ensuring document clarity and consistency for subsequent feature detection. We utilize the FAST detector for feature detection, extracting keypoints representing handwriting styles, followed by clustering with the k-means algorithm to obtain meaningful patches of uniform size. This strategic clustering minimizes redundancy and creates a comprehensive dataset ideal for deep learning classification tasks. Leveraging vision transformer models, our methodology effectively learns complex patterns and features from extracted patches, enabling precise identification of writers across historical manuscripts. This study pioneers the application of vision transformers in historical document analysis, showcasing superior performance on the \"ICDAR 2017\" dataset compared to state-of-the-art methods and affirming our approach as a robust tool for historical manuscript analysis.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12194343/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11060204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying the scriptwriter in historical manuscripts is crucial for historians, providing valuable insights into historical contexts and aiding in solving historical mysteries. This research presents a robust deep learning system designed for classifying historical manuscripts by writer, employing intelligent feature selection and vision transformers. Our methodology meticulously investigates the efficacy of both handcrafted techniques for feature identification and deep learning architectures for classification tasks in writer identification. The initial preprocessing phase involves thorough document refinement using bilateral filtering for denoising and Otsu thresholding for binarization, ensuring document clarity and consistency for subsequent feature detection. We utilize the FAST detector for feature detection, extracting keypoints representing handwriting styles, followed by clustering with the k-means algorithm to obtain meaningful patches of uniform size. This strategic clustering minimizes redundancy and creates a comprehensive dataset ideal for deep learning classification tasks. Leveraging vision transformer models, our methodology effectively learns complex patterns and features from extracted patches, enabling precise identification of writers across historical manuscripts. This study pioneers the application of vision transformers in historical document analysis, showcasing superior performance on the "ICDAR 2017" dataset compared to state-of-the-art methods and affirming our approach as a robust tool for historical manuscript analysis.

历史手稿分析:一种基于视觉变形的智能特征选择的深度学习系统。
确定历史手稿的作者对历史学家来说至关重要,这为了解历史背景提供了有价值的见解,并有助于解开历史谜团。本研究提出了一种鲁棒的深度学习系统,该系统采用智能特征选择和视觉变换来对作者的历史手稿进行分类。我们的方法细致地研究了手工技术用于特征识别和深度学习架构用于作家识别分类任务的有效性。最初的预处理阶段包括使用双边滤波进行去噪和Otsu阈值进行二值化的彻底文档细化,确保文档的清晰度和一致性,以用于后续的特征检测。我们利用FAST检测器进行特征检测,提取代表笔迹风格的关键点,然后使用k-means算法聚类以获得均匀大小的有意义的斑块。这种战略性聚类最大限度地减少了冗余,并为深度学习分类任务创建了一个全面的数据集。利用视觉转换模型,我们的方法有效地从提取的补丁中学习复杂的模式和特征,从而精确识别历史手稿中的作者。这项研究开创了视觉变换在历史文献分析中的应用,与最先进的方法相比,在“ICDAR 2017”数据集上展示了卓越的性能,并肯定了我们的方法是历史手稿分析的强大工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信