Detection of Auto-Immune Disease using Deep Learning Techniques.

Q4 Medicine
Mediterranean Journal of Rheumatology Pub Date : 2025-03-31 eCollection Date: 2025-03-01 DOI:10.31138/mjr.060624.doa
B Subramanya, Divya B Shivanna, Nithin Raj G, Pratham S Prabhu, Mohammed Yaseer, Roopa S Rao
{"title":"Detection of Auto-Immune Disease using Deep Learning Techniques.","authors":"B Subramanya, Divya B Shivanna, Nithin Raj G, Pratham S Prabhu, Mohammed Yaseer, Roopa S Rao","doi":"10.31138/mjr.060624.doa","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The diagnosis of autoimmune disorders, particularly through the Anti-Nuclear Antibodies (ANA) Indirect Immunofluorescence (IIF) test utilising human epithelial type-2 (HEp-2) cells, presents a formidable challenge due to the subjective nature of pathologists' analysis. In response, this study proposes an innovative automated approach that integrates deep learning, advanced image processing, guided Hep-2 Cell, and mitotic cell instance segmentation.</p><p><strong>Methods: </strong>Leveraging the ICPR 2016 dataset for training and evaluation, this research encountered an initial challenge of dataset imbalance, with a significantly lower number of mitotic cells compared to HEp-2 Homogenous cells. To overcome this, data augmentation techniques were strategically employed to ensure a balanced representation.</p><p><strong>Results: </strong>In Experiment 1, the Detectron2 model achieved an overall mean Average Precision of 54% for segmentation masks and 55% for bounding boxes. In Experiment 2, the YOLOv8n model demonstrated an impressive overall Mean Average Precision score of 94% for bounding boxes and 93% for segmentation masks, showcasing its exceptional efficacy in detecting HEp-2 cells and mitotic cells. The instance segmentation provided a more granular analysis, revealing the count of cells in each class, further highlighting the model's proficiency in diagnosing autoimmune diseases.</p><p><strong>Conclusion: </strong>This study establishes a reliable and automated method for HEp-2 Homogenous cell detection, addressing the ongoing challenges in autoimmune disease diagnosis and contributing significantly to the ongoing revolution in this critical field.</p>","PeriodicalId":32816,"journal":{"name":"Mediterranean Journal of Rheumatology","volume":"36 1","pages":"50-62"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183458/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mediterranean Journal of Rheumatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31138/mjr.060624.doa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The diagnosis of autoimmune disorders, particularly through the Anti-Nuclear Antibodies (ANA) Indirect Immunofluorescence (IIF) test utilising human epithelial type-2 (HEp-2) cells, presents a formidable challenge due to the subjective nature of pathologists' analysis. In response, this study proposes an innovative automated approach that integrates deep learning, advanced image processing, guided Hep-2 Cell, and mitotic cell instance segmentation.

Methods: Leveraging the ICPR 2016 dataset for training and evaluation, this research encountered an initial challenge of dataset imbalance, with a significantly lower number of mitotic cells compared to HEp-2 Homogenous cells. To overcome this, data augmentation techniques were strategically employed to ensure a balanced representation.

Results: In Experiment 1, the Detectron2 model achieved an overall mean Average Precision of 54% for segmentation masks and 55% for bounding boxes. In Experiment 2, the YOLOv8n model demonstrated an impressive overall Mean Average Precision score of 94% for bounding boxes and 93% for segmentation masks, showcasing its exceptional efficacy in detecting HEp-2 cells and mitotic cells. The instance segmentation provided a more granular analysis, revealing the count of cells in each class, further highlighting the model's proficiency in diagnosing autoimmune diseases.

Conclusion: This study establishes a reliable and automated method for HEp-2 Homogenous cell detection, addressing the ongoing challenges in autoimmune disease diagnosis and contributing significantly to the ongoing revolution in this critical field.

Abstract Image

Abstract Image

Abstract Image

利用深度学习技术检测自身免疫性疾病。
目的:自身免疫性疾病的诊断,特别是利用人上皮2型(HEp-2)细胞的抗核抗体(ANA)间接免疫荧光(IIF)测试,由于病理学家分析的主观性,提出了一个巨大的挑战。为此,本研究提出了一种集成深度学习、高级图像处理、Hep-2细胞引导和有丝分裂细胞实例分割的创新自动化方法。方法:利用ICPR 2016数据集进行训练和评估,本研究遇到了数据不平衡的初始挑战,与HEp-2同质细胞相比,有丝分裂细胞的数量明显减少。为了克服这个问题,战略性地采用了数据增强技术来确保均衡的表示。结果:在实验1中,Detectron2模型对分割蒙版的总体平均精度为54%,对边界框的平均精度为55%。在实验2中,YOLOv8n模型在检测HEp-2细胞和有丝分裂细胞方面表现出了令人印象深刻的总体平均精度得分(94%)和分割掩模(93%),显示了其卓越的效率。实例分割提供了更细粒度的分析,揭示了每一类细胞的计数,进一步突出了模型在诊断自身免疫性疾病方面的熟练程度。结论:本研究建立了一种可靠且自动化的HEp-2同质细胞检测方法,解决了自身免疫性疾病诊断中的挑战,并为这一关键领域的持续革命做出了重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
42
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信