Augmentation of Antimicrobial Activity of Spiniferin by Introducing an Arginine Residue Toward Its Amino Terminus: A Possible Role of Cation-π Interaction.
Jyotshana Saroj, Rahul Dev Verma, Sariyah Akhtar, Neeraj Kumar Verma, Arvind Gupta, Arsh Tripathi, Juhi Sharma, Kalyan Mitra, Mohammad Imran Siddiqi, Jimut Kanti Ghosh
{"title":"Augmentation of Antimicrobial Activity of Spiniferin by Introducing an Arginine Residue Toward Its Amino Terminus: A Possible Role of Cation-π Interaction.","authors":"Jyotshana Saroj, Rahul Dev Verma, Sariyah Akhtar, Neeraj Kumar Verma, Arvind Gupta, Arsh Tripathi, Juhi Sharma, Kalyan Mitra, Mohammad Imran Siddiqi, Jimut Kanti Ghosh","doi":"10.1021/acsbiomedchemau.4c00119","DOIUrl":null,"url":null,"abstract":"<p><p>Spiniferin is a 13-mer scorpion-origin antimicrobial peptide having poor antimicrobial activity. To augment Spiniferin's antimicrobial activity, we enhanced its net positive charge by replacing a glutamic acid residue with an arginine residue toward its amino terminus. We envisaged that a cation-π interaction could be introduced between this arginine residue and the tryptophan residue located near the middle of Spiniferin. This cation-π interaction could promote stronger interaction of the peptide with a negatively charged bacterial membranes, resulting in its increased antimicrobial activity. Though glutamic acid-to-arginine substitution [Spiniferin-(E4R)] enhanced both the antimicrobial and toxic properties of Spiniferin, the same replacement with a d-arginine residue [Spiniferin-(E4dR)] significantly enhanced its antimicrobial activity against selected Gram-negative/positive bacteria and a MRSA strain while maintaining low hemolytic/cytotoxic properties. Interestingly, Spiniferin-(E4dR) analogs, with its aromatic-tryptophan residue substituted with an aromatic phenylalanine or an aliphatic valine residue, and its d-arginine residue replaced with a d-lysine residue, showed much lesser antibacterial activity than Spiniferin-(E4dR) or Spiniferin-(E4R). The results indicated a crucial role of the tryptophan and l-/d-arginine combination in augmenting the antimicrobial activity of Spiniferin analogs, Spiniferin-(E4R) and Spiniferin-(E4dR). Spiniferin-(E4dR) showed bactericidal properties against selected Gram-positive/negative bacteria. It permeabilized bacterial membranes and induced damages in bacterial membrane organization, suggesting that the bacterial plasma membrane is its target for exhibiting antimicrobial activity. Further, Spiniferin-(E4dR) in the intravenous route demonstrated the survival of E. coli ATCC 25922-infected mice and the clearance of bacteria from the visceral organs of these mice. Computational studies showed the requisite distance between the arginine's cationic side chain and the π-electron site of the tryptophan residue for a possible intramolecular cation-π interaction in Spiniferin-(E4dR)/Spiniferin-(E4R).</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"5 3","pages":"387-402"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Bio & Med Chem Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsbiomedchemau.4c00119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/18 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spiniferin is a 13-mer scorpion-origin antimicrobial peptide having poor antimicrobial activity. To augment Spiniferin's antimicrobial activity, we enhanced its net positive charge by replacing a glutamic acid residue with an arginine residue toward its amino terminus. We envisaged that a cation-π interaction could be introduced between this arginine residue and the tryptophan residue located near the middle of Spiniferin. This cation-π interaction could promote stronger interaction of the peptide with a negatively charged bacterial membranes, resulting in its increased antimicrobial activity. Though glutamic acid-to-arginine substitution [Spiniferin-(E4R)] enhanced both the antimicrobial and toxic properties of Spiniferin, the same replacement with a d-arginine residue [Spiniferin-(E4dR)] significantly enhanced its antimicrobial activity against selected Gram-negative/positive bacteria and a MRSA strain while maintaining low hemolytic/cytotoxic properties. Interestingly, Spiniferin-(E4dR) analogs, with its aromatic-tryptophan residue substituted with an aromatic phenylalanine or an aliphatic valine residue, and its d-arginine residue replaced with a d-lysine residue, showed much lesser antibacterial activity than Spiniferin-(E4dR) or Spiniferin-(E4R). The results indicated a crucial role of the tryptophan and l-/d-arginine combination in augmenting the antimicrobial activity of Spiniferin analogs, Spiniferin-(E4R) and Spiniferin-(E4dR). Spiniferin-(E4dR) showed bactericidal properties against selected Gram-positive/negative bacteria. It permeabilized bacterial membranes and induced damages in bacterial membrane organization, suggesting that the bacterial plasma membrane is its target for exhibiting antimicrobial activity. Further, Spiniferin-(E4dR) in the intravenous route demonstrated the survival of E. coli ATCC 25922-infected mice and the clearance of bacteria from the visceral organs of these mice. Computational studies showed the requisite distance between the arginine's cationic side chain and the π-electron site of the tryptophan residue for a possible intramolecular cation-π interaction in Spiniferin-(E4dR)/Spiniferin-(E4R).
期刊介绍:
ACS Bio & Med Chem Au is a broad scope open access journal which publishes short letters comprehensive articles reviews and perspectives in all aspects of biological and medicinal chemistry. Studies providing fundamental insights or describing novel syntheses as well as clinical or other applications-based work are welcomed.This broad scope includes experimental and theoretical studies on the chemical physical mechanistic and/or structural basis of biological or cell function in all domains of life. It encompasses the fields of chemical biology synthetic biology disease biology cell biology agriculture and food natural products research nucleic acid biology neuroscience structural biology and biophysics.The journal publishes studies that pertain to a broad range of medicinal chemistry including compound design and optimization biological evaluation molecular mechanistic understanding of drug delivery and drug delivery systems imaging agents and pharmacology and translational science of both small and large bioactive molecules. Novel computational cheminformatics and structural studies for the identification (or structure-activity relationship analysis) of bioactive molecules ligands and their targets are also welcome. The journal will consider computational studies applying established computational methods but only in combination with novel and original experimental data (e.g. in cases where new compounds have been designed and tested).Also included in the scope of the journal are articles relating to infectious diseases research on pathogens host-pathogen interactions therapeutics diagnostics vaccines drug-delivery systems and other biomedical technology development pertaining to infectious diseases.