Elucidation of novel diagnostic biomarkers and therapeutic targets in colorectal carcinoma: an integrative approach leveraging multi-omics, computational biology, and single-cell sequencing technologies.

IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tingyang Li, Yuhua Tian, Yinchuan Wang, Jianle Yang, Ziyu Chen, Yiliang Li
{"title":"Elucidation of novel diagnostic biomarkers and therapeutic targets in colorectal carcinoma: an integrative approach leveraging multi-omics, computational biology, and single-cell sequencing technologies.","authors":"Tingyang Li, Yuhua Tian, Yinchuan Wang, Jianle Yang, Ziyu Chen, Yiliang Li","doi":"10.1007/s00335-025-10141-z","DOIUrl":null,"url":null,"abstract":"<p><p>This study employs a comprehensive, multi-layered analytical approach to comprehensively investigate the pathogenesis, diagnostic methodologies, and potential therapeutic targets of colorectal cancer. Integrating data from the Global Burden of Disease (GBD) database, transcriptomics, proteomics, and single-cell sequencing technologies, this study elucidates both the epidemiological characteristics and molecular mechanisms of colorectal cancer. Our findings indicate that VEGFA, ICAM1, and IL6R play prominent roles in cancer progression. Proteomics analysis has identified multiple potential drug targets, and molecular docking and dynamic simulations have provided a theoretical foundation for developing drugs targeting VEGFA. Multi-omics studies have revealed that colorectal cancer progression involves intricate microbiome-host interactions, metabolic regulation, and immune response mechanisms, with factors such as Clostridia, 4E-BP1, AIFM1, and CXCL5 exhibiting dual roles. These discoveries not only deepen our understanding of colorectal cancer pathogenesis but also offer novel insights for optimizing diagnostic and therapeutic strategies, thereby laying the groundwork for developing personalized treatment regimens. Future research should focus on further validating these findings and exploring their potential clinical applications.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mammalian Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00335-025-10141-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs a comprehensive, multi-layered analytical approach to comprehensively investigate the pathogenesis, diagnostic methodologies, and potential therapeutic targets of colorectal cancer. Integrating data from the Global Burden of Disease (GBD) database, transcriptomics, proteomics, and single-cell sequencing technologies, this study elucidates both the epidemiological characteristics and molecular mechanisms of colorectal cancer. Our findings indicate that VEGFA, ICAM1, and IL6R play prominent roles in cancer progression. Proteomics analysis has identified multiple potential drug targets, and molecular docking and dynamic simulations have provided a theoretical foundation for developing drugs targeting VEGFA. Multi-omics studies have revealed that colorectal cancer progression involves intricate microbiome-host interactions, metabolic regulation, and immune response mechanisms, with factors such as Clostridia, 4E-BP1, AIFM1, and CXCL5 exhibiting dual roles. These discoveries not only deepen our understanding of colorectal cancer pathogenesis but also offer novel insights for optimizing diagnostic and therapeutic strategies, thereby laying the groundwork for developing personalized treatment regimens. Future research should focus on further validating these findings and exploring their potential clinical applications.

结直肠癌新的诊断生物标志物和治疗靶点的阐明:利用多组学、计算生物学和单细胞测序技术的综合方法。
本研究采用全面、多层次的分析方法,全面探讨结直肠癌的发病机制、诊断方法和潜在的治疗靶点。本研究整合了全球疾病负担(GBD)数据库、转录组学、蛋白质组学和单细胞测序技术的数据,阐明了结直肠癌的流行病学特征和分子机制。我们的研究结果表明,VEGFA、ICAM1和IL6R在癌症进展中发挥着重要作用。蛋白质组学分析发现了多个潜在的药物靶点,分子对接和动态模拟为开发靶向VEGFA的药物提供了理论基础。多组学研究表明,结直肠癌的进展涉及复杂的微生物-宿主相互作用、代谢调节和免疫反应机制,其中梭状芽胞杆菌、4E-BP1、AIFM1和CXCL5等因子发挥双重作用。这些发现不仅加深了我们对结直肠癌发病机制的认识,而且为优化诊断和治疗策略提供了新的见解,从而为制定个性化的治疗方案奠定了基础。未来的研究应侧重于进一步验证这些发现并探索其潜在的临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mammalian Genome
Mammalian Genome 生物-生化与分子生物学
CiteScore
4.00
自引率
0.00%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Mammalian Genome focuses on the experimental, theoretical and technical aspects of genetics, genomics, epigenetics and systems biology in mouse, human and other mammalian species, with an emphasis on the relationship between genotype and phenotype, elucidation of biological and disease pathways as well as experimental aspects of interventions, therapeutics, and precision medicine. The journal aims to publish high quality original papers that present novel findings in all areas of mammalian genetic research as well as review articles on areas of topical interest. The journal will also feature commentaries and editorials to inform readers of breakthrough discoveries as well as issues of research standards, policies and ethics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信