B Aubouin-Pairault, M Reus, B Meyer, R Wolf, M Fiacchini, T Dang
{"title":"A Comprehensive Framework for the Prediction of Intra-Operative Hypotension.","authors":"B Aubouin-Pairault, M Reus, B Meyer, R Wolf, M Fiacchini, T Dang","doi":"10.1109/JBHI.2025.3583044","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, the problem of triggering early warning for intra-operative hypotension (IOH) is addressed. Recent studies on the Hypotension Prediction Index have demonstrated a gap between the results presented during model development and clinical evaluation. Thus, there is a need for better collaboration between data scientists and clinicians who need to agree on a common basis to evaluate those models. In this paper, we propose a comprehensive framework for IOH prediction: to address several issues inherent to the commonly used fixed-time-to-onset approach in the literature, a sliding window approach is suggested. The risk prediction problem is formalized with consistent precision-recall metrics rather than the receiveroperator characteristic. For illustration, a standard machine learning method is applied using two different datasets from non-cardiac and cardiac surgery. Training is done on a part of the non-cardiac surgery dataset and tests are performed separately on the rest of the non-cardiac dataset and cardiac dataset. Compared to a realistic clinical baseline, the proposed method achieves a significant improvement on the non-cardiac surgeries (precision of 48% compared to 32% for a recall of 28% (p<0.0001)) . For cardiac surgery, this improvement is less significant but still demonstrate the generalization of the model.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3583044","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the problem of triggering early warning for intra-operative hypotension (IOH) is addressed. Recent studies on the Hypotension Prediction Index have demonstrated a gap between the results presented during model development and clinical evaluation. Thus, there is a need for better collaboration between data scientists and clinicians who need to agree on a common basis to evaluate those models. In this paper, we propose a comprehensive framework for IOH prediction: to address several issues inherent to the commonly used fixed-time-to-onset approach in the literature, a sliding window approach is suggested. The risk prediction problem is formalized with consistent precision-recall metrics rather than the receiveroperator characteristic. For illustration, a standard machine learning method is applied using two different datasets from non-cardiac and cardiac surgery. Training is done on a part of the non-cardiac surgery dataset and tests are performed separately on the rest of the non-cardiac dataset and cardiac dataset. Compared to a realistic clinical baseline, the proposed method achieves a significant improvement on the non-cardiac surgeries (precision of 48% compared to 32% for a recall of 28% (p<0.0001)) . For cardiac surgery, this improvement is less significant but still demonstrate the generalization of the model.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.