Robert Koucheki, John-Peter Bonello, Aazad Abbas, Johnathan Lex, Anne L Versteeg, Mohammad Zarrabian, Perry Dhaliwal, Joel Finkelstein, Stephen Lewis, Jay Toor
{"title":"A comparison of key performance metrics of major robotic platforms in spine surgery: a network meta-analysis of 14,462 screws.","authors":"Robert Koucheki, John-Peter Bonello, Aazad Abbas, Johnathan Lex, Anne L Versteeg, Mohammad Zarrabian, Perry Dhaliwal, Joel Finkelstein, Stephen Lewis, Jay Toor","doi":"10.1007/s00586-025-08990-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This meta-analysis compares prominent robotic platforms for spinal surgery, using conventional (freehand or fluoroscopy) and non-robotic navigation as common controls.</p><p><strong>Methods: </strong>Literature searches were conducted using MEDLINE and EMBASE databases. Studies comparing screw placement of robot-assisted surgery with freehand/fluoroscopic or non-robotic navigation were included. Standard pairwise and network meta-analysis techniques with a random effects model (REM) were used with significance set at P < 0.05. Primary objective was to compare screw placement accuracy and breach incidence across robot platforms. Secondary objective was to compare neurologic complication (NC) rate and blood loss (BL) among platforms.</p><p><strong>Results: </strong>A total of 27 studies totaling 3404 patients were included. The robotic group demonstrated significantly fewer breaches compared to the conventional group (OR 0.54, P = 0.0004). The TiRobot (TINAVI) and Renaissance (Mazor) demonstrated the best overall accuracy. The robotic group demonstrated significantly lower NC (OR 0.3, P = 0.02) and lower BL (MD: - 112.74 mL, P = 0.002) compared to the conventional approach (freehand or fluoroscopy). Potential conflicts of interest and source bias were found in 60% of TiRobot and 30% of SpineAssist studies. Robotic surgery had significantly lower major breach rates compared to non-robotic navigation (OR 0.39, P = 0.04). The Mazor X model was superior between all robotic platforms, with an OR of 0.15 (95% CrI 0.01 to 0.69, P < 0.00001, I<sup>2</sup> = 0%) for major breaches compared to non-robotic navigation.</p><p><strong>Conclusion: </strong>Robot-assisted navigation platforms show significant reduction in breach rates compared to conventional and non-robotic navigation approaches in adult spinal instrumentation surgery. MazorX (Mazor), TiRobot (TINAVI) and Renaissance (Mazor) emerge as leaders in robotic spine surgery, each contributing to the increase efficacy. To obtain a more reliable evidence base guiding clinical practice and decision-making on the safety, efficacy, and superiority of specific robot-assisted navigation platforms in spinal surgery, further unbiased RCTs with international collaborations are needed.</p>","PeriodicalId":12323,"journal":{"name":"European Spine Journal","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Spine Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00586-025-08990-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This meta-analysis compares prominent robotic platforms for spinal surgery, using conventional (freehand or fluoroscopy) and non-robotic navigation as common controls.
Methods: Literature searches were conducted using MEDLINE and EMBASE databases. Studies comparing screw placement of robot-assisted surgery with freehand/fluoroscopic or non-robotic navigation were included. Standard pairwise and network meta-analysis techniques with a random effects model (REM) were used with significance set at P < 0.05. Primary objective was to compare screw placement accuracy and breach incidence across robot platforms. Secondary objective was to compare neurologic complication (NC) rate and blood loss (BL) among platforms.
Results: A total of 27 studies totaling 3404 patients were included. The robotic group demonstrated significantly fewer breaches compared to the conventional group (OR 0.54, P = 0.0004). The TiRobot (TINAVI) and Renaissance (Mazor) demonstrated the best overall accuracy. The robotic group demonstrated significantly lower NC (OR 0.3, P = 0.02) and lower BL (MD: - 112.74 mL, P = 0.002) compared to the conventional approach (freehand or fluoroscopy). Potential conflicts of interest and source bias were found in 60% of TiRobot and 30% of SpineAssist studies. Robotic surgery had significantly lower major breach rates compared to non-robotic navigation (OR 0.39, P = 0.04). The Mazor X model was superior between all robotic platforms, with an OR of 0.15 (95% CrI 0.01 to 0.69, P < 0.00001, I2 = 0%) for major breaches compared to non-robotic navigation.
Conclusion: Robot-assisted navigation platforms show significant reduction in breach rates compared to conventional and non-robotic navigation approaches in adult spinal instrumentation surgery. MazorX (Mazor), TiRobot (TINAVI) and Renaissance (Mazor) emerge as leaders in robotic spine surgery, each contributing to the increase efficacy. To obtain a more reliable evidence base guiding clinical practice and decision-making on the safety, efficacy, and superiority of specific robot-assisted navigation platforms in spinal surgery, further unbiased RCTs with international collaborations are needed.
期刊介绍:
"European Spine Journal" is a publication founded in response to the increasing trend toward specialization in spinal surgery and spinal pathology in general. The Journal is devoted to all spine related disciplines, including functional and surgical anatomy of the spine, biomechanics and pathophysiology, diagnostic procedures, and neurology, surgery and outcomes. The aim of "European Spine Journal" is to support the further development of highly innovative spine treatments including but not restricted to surgery and to provide an integrated and balanced view of diagnostic, research and treatment procedures as well as outcomes that will enhance effective collaboration among specialists worldwide. The “European Spine Journal” also participates in education by means of videos, interactive meetings and the endorsement of educative efforts.
Official publication of EUROSPINE, The Spine Society of Europe