Molecular mechanism of pH sensing and activation in GPR4 reveals proton-mediated GPCR signaling.

IF 13 1区 生物学 Q1 CELL BIOLOGY
Chongzhao You, Shimeng Guo, Tianwei Zhang, Xinheng He, Tianyu Gao, Wenwen Xin, Zining Zhu, Yujie Lu, Youwei Xu, Zhen Li, Yumu Zhang, Xi Cheng, Yi Jiang, Xin Xie, H Eric Xu
{"title":"Molecular mechanism of pH sensing and activation in GPR4 reveals proton-mediated GPCR signaling.","authors":"Chongzhao You, Shimeng Guo, Tianwei Zhang, Xinheng He, Tianyu Gao, Wenwen Xin, Zining Zhu, Yujie Lu, Youwei Xu, Zhen Li, Yumu Zhang, Xi Cheng, Yi Jiang, Xin Xie, H Eric Xu","doi":"10.1038/s41421-025-00807-y","DOIUrl":null,"url":null,"abstract":"<p><p>Maintaining pH homeostasis is critical for cellular function across all living organisms. Proton-sensing G protein-coupled receptors (GPCRs), particularly GPR4, play a pivotal role in cellular responses to pH changes. Yet, the molecular mechanisms underlying their proton sensing and activation remain incompletely understood. Here we present high-resolution cryo-electron microscopy structures of GPR4 in complex with G proteins under physiological and acidic pH conditions. Our structures reveal an intricate proton-sensing mechanism driven by a sophisticated histidine network in the receptor's extracellular domain. Upon protonation of key histidines under acidic conditions, a remarkable conformational cascade is initiated, propagating from the extracellular region to the intracellular G protein-coupling interface. This dynamic process involves precise transmembrane helix rearrangements and conformational shifts of conserved motifs, mediated by strategically positioned water molecules. Notably, we discovered a bound bioactive lipid, lysophosphatidylcholine, which has positive allosteric effects on GPR4 activation. These findings provide a comprehensive framework for understanding proton sensing in GPCRs and the interplay between pH sensing and lipid regulation, offering insights into cellular pH homeostasis and potential therapies for pH-related disorders.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"59"},"PeriodicalIF":13.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12187918/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Discovery","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41421-025-00807-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Maintaining pH homeostasis is critical for cellular function across all living organisms. Proton-sensing G protein-coupled receptors (GPCRs), particularly GPR4, play a pivotal role in cellular responses to pH changes. Yet, the molecular mechanisms underlying their proton sensing and activation remain incompletely understood. Here we present high-resolution cryo-electron microscopy structures of GPR4 in complex with G proteins under physiological and acidic pH conditions. Our structures reveal an intricate proton-sensing mechanism driven by a sophisticated histidine network in the receptor's extracellular domain. Upon protonation of key histidines under acidic conditions, a remarkable conformational cascade is initiated, propagating from the extracellular region to the intracellular G protein-coupling interface. This dynamic process involves precise transmembrane helix rearrangements and conformational shifts of conserved motifs, mediated by strategically positioned water molecules. Notably, we discovered a bound bioactive lipid, lysophosphatidylcholine, which has positive allosteric effects on GPR4 activation. These findings provide a comprehensive framework for understanding proton sensing in GPCRs and the interplay between pH sensing and lipid regulation, offering insights into cellular pH homeostasis and potential therapies for pH-related disorders.

GPR4 pH感知和激活的分子机制揭示了质子介导的GPCR信号传导。
维持pH稳态对所有生物体的细胞功能至关重要。质子传感G蛋白偶联受体(gpcr),特别是GPR4,在细胞对pH变化的反应中起着关键作用。然而,它们的质子感应和激活的分子机制仍然不完全清楚。在这里,我们展示了生理和酸性pH条件下GPR4与G蛋白复合物的高分辨率冷冻电镜结构。我们的结构揭示了一个复杂的质子感应机制,由受体胞外区域的复杂组氨酸网络驱动。当关键组氨酸在酸性条件下质子化时,一个显著的构象级联被启动,从细胞外区域传播到细胞内G蛋白偶联界面。这个动态过程包括精确的跨膜螺旋重排和保守基序的构象转移,由战略性定位的水分子介导。值得注意的是,我们发现了一种结合的生物活性脂质,溶血磷脂酰胆碱,它对GPR4的激活具有积极的变构作用。这些发现为理解GPCRs中的质子感应以及pH感应与脂质调节之间的相互作用提供了一个全面的框架,为细胞pH稳态和pH相关疾病的潜在治疗提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Discovery
Cell Discovery Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
24.20
自引率
0.60%
发文量
120
审稿时长
20 weeks
期刊介绍: Cell Discovery is a cutting-edge, open access journal published by Springer Nature in collaboration with the Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences (CAS). Our aim is to provide a dynamic and accessible platform for scientists to showcase their exceptional original research. Cell Discovery covers a wide range of topics within the fields of molecular and cell biology. We eagerly publish results of great significance and that are of broad interest to the scientific community. With an international authorship and a focus on basic life sciences, our journal is a valued member of Springer Nature's prestigious Molecular Cell Biology journals. In summary, Cell Discovery offers a fresh approach to scholarly publishing, enabling scientists from around the world to share their exceptional findings in molecular and cell biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信