Kaushik Chanda, Eddie Grinman, Kaylyn Clark, Abhishek Sadhu, Bindu Raveendra, Supriya Swarnkar, Sathyanarayanan V. Puthanveettil
{"title":"The lncRNA Gas5 is an activity-responsive scaffold that mediates cAMP-dependent synaptic plasticity","authors":"Kaushik Chanda, Eddie Grinman, Kaylyn Clark, Abhishek Sadhu, Bindu Raveendra, Supriya Swarnkar, Sathyanarayanan V. Puthanveettil","doi":"10.1126/scisignal.adn2044","DOIUrl":null,"url":null,"abstract":"<div >Changes in the transcriptome are critical in shaping the structural plasticity of neurons, which underpins learning and long-term memory storage. Here, we explored the effect of two opposing, plasticity-associated pathways—cAMP second-messenger signaling and metabotropic glutamate receptor (mGluR1 and mGluR5) signaling—on the transcriptome in hippocampal neurons and how these pathways operate in distinct and coordinated manners to induce structural changes. Integration of transcriptome data and molecular pathway analysis identified central “hub” genes that were rapidly induced by cAMP and/or mGluR1/5 in hippocampal neurons. These included the long noncoding RNA (lncRNA) Gas5, whose expression was induced specifically by cAMP and which was targeted to dendrites by the kinesin motor protein KIF1A. In the dendrites, Gas5 interacted with various proteins and coding and noncoding RNAs associated with synaptic function and plasticity, and these interactions were altered by cAMP signaling. Gas5 interacted with the microRNA miR-26a-5p and sequestered it from several of its mRNA targets associated with neuronal function and whose translation was induced by cAMP. Gas5 was critical for excitatory synaptic transmission induced by cAMP but not those induced by mGluR1/5. Furthermore, Gas5 deficiency impaired dendritic branching and synapse morphology, and Gas5 abundance was decreased in the hippocampus of a mouse model of Alzheimer’s disease. Together, these findings provide insight into the transcriptional networks involved in synaptic plasticity and a lncRNA interactome that mediates dendritically localized regulation of excitatory synaptic transmission and neuronal architecture.</div>","PeriodicalId":21658,"journal":{"name":"Science Signaling","volume":"18 892","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scisignal.adn2044","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Signaling","FirstCategoryId":"99","ListUrlMain":"https://www.science.org/doi/10.1126/scisignal.adn2044","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Changes in the transcriptome are critical in shaping the structural plasticity of neurons, which underpins learning and long-term memory storage. Here, we explored the effect of two opposing, plasticity-associated pathways—cAMP second-messenger signaling and metabotropic glutamate receptor (mGluR1 and mGluR5) signaling—on the transcriptome in hippocampal neurons and how these pathways operate in distinct and coordinated manners to induce structural changes. Integration of transcriptome data and molecular pathway analysis identified central “hub” genes that were rapidly induced by cAMP and/or mGluR1/5 in hippocampal neurons. These included the long noncoding RNA (lncRNA) Gas5, whose expression was induced specifically by cAMP and which was targeted to dendrites by the kinesin motor protein KIF1A. In the dendrites, Gas5 interacted with various proteins and coding and noncoding RNAs associated with synaptic function and plasticity, and these interactions were altered by cAMP signaling. Gas5 interacted with the microRNA miR-26a-5p and sequestered it from several of its mRNA targets associated with neuronal function and whose translation was induced by cAMP. Gas5 was critical for excitatory synaptic transmission induced by cAMP but not those induced by mGluR1/5. Furthermore, Gas5 deficiency impaired dendritic branching and synapse morphology, and Gas5 abundance was decreased in the hippocampus of a mouse model of Alzheimer’s disease. Together, these findings provide insight into the transcriptional networks involved in synaptic plasticity and a lncRNA interactome that mediates dendritically localized regulation of excitatory synaptic transmission and neuronal architecture.
期刊介绍:
"Science Signaling" is a reputable, peer-reviewed journal dedicated to the exploration of cell communication mechanisms, offering a comprehensive view of the intricate processes that govern cellular regulation. This journal, published weekly online by the American Association for the Advancement of Science (AAAS), is a go-to resource for the latest research in cell signaling and its various facets.
The journal's scope encompasses a broad range of topics, including the study of signaling networks, synthetic biology, systems biology, and the application of these findings in drug discovery. It also delves into the computational and modeling aspects of regulatory pathways, providing insights into how cells communicate and respond to their environment.
In addition to publishing full-length articles that report on groundbreaking research, "Science Signaling" also features reviews that synthesize current knowledge in the field, focus articles that highlight specific areas of interest, and editor-written highlights that draw attention to particularly significant studies. This mix of content ensures that the journal serves as a valuable resource for both researchers and professionals looking to stay abreast of the latest advancements in cell communication science.