T. Iwanaka, T. Imamura, S. Aoki, E. Marcq, H. Sagawa, A. Stolzenbach, Y. J. Lee, A. Yamazaki
{"title":"Sulfur Dioxide Distribution at the Venusian Cloud-Top Retrieved From Akatsuki UV Images","authors":"T. Iwanaka, T. Imamura, S. Aoki, E. Marcq, H. Sagawa, A. Stolzenbach, Y. J. Lee, A. Yamazaki","doi":"10.1029/2024JE008775","DOIUrl":null,"url":null,"abstract":"<p><span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> $\\mathrm{S}{\\mathrm{O}}_{\\mathrm{2}}$</annotation>\n </semantics></math> and the unidentified UV absorber are major absorbers in the near-ultraviolet region in the Venusian atmosphere and influence the climate system. We developed a method to retrieve <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> $\\mathrm{S}{\\mathrm{O}}_{\\mathrm{2}}$</annotation>\n </semantics></math> and the imaginary part of the refractive index <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>n</mi>\n <mi>i</mi>\n </msub>\n </mrow>\n <annotation> ${n}_{\\mathrm{i}}$</annotation>\n </semantics></math>, a proxy for the unidentified absorber, from 15,002 pairs of 283 and <span></span><math>\n <semantics>\n <mrow>\n <mn>365</mn>\n <mspace></mspace>\n <mi>n</mi>\n <mi>m</mi>\n </mrow>\n <annotation> $365\\,\\mathrm{n}\\mathrm{m}$</annotation>\n </semantics></math> images taken by the Ultraviolet imager (UVI) onboard Akatsuki. We obtained the distributions of <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> $\\mathrm{S}{\\mathrm{O}}_{\\mathrm{2}}$</annotation>\n </semantics></math> and the unidentified absorber with high spatial resolution every 2 hours for about 6.5 years. We analyzed the local time and latitudinal distributions of <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> $\\mathrm{S}{\\mathrm{O}}_{\\mathrm{2}}$</annotation>\n </semantics></math> and the unidentified absorber. The <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> $\\mathrm{S}{\\mathrm{O}}_{\\mathrm{2}}$</annotation>\n </semantics></math> mixing ratio at the cloud top around <span></span><math>\n <semantics>\n <mrow>\n <mn>70</mn>\n <mspace></mspace>\n <mi>k</mi>\n <mi>m</mi>\n </mrow>\n <annotation> $70\\,\\mathrm{k}\\mathrm{m}$</annotation>\n </semantics></math> altitude depends on latitude and local time, ranging from 80 to <span></span><math>\n <semantics>\n <mrow>\n <mn>200</mn>\n <mspace></mspace>\n <mi>p</mi>\n <mi>p</mi>\n <mi>b</mi>\n </mrow>\n <annotation> $200\\,\\mathrm{p}\\mathrm{p}\\mathrm{b}$</annotation>\n </semantics></math>, within the range of previous observations. <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> $\\mathrm{S}{\\mathrm{O}}_{\\mathrm{2}}$</annotation>\n </semantics></math> and the unidentified absorber are abundant at low latitudes and decrease toward mid-latitudes, which is attributed to vertical transport by the Hadley circulation. The <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> $\\mathrm{S}{\\mathrm{O}}_{\\mathrm{2}}$</annotation>\n </semantics></math> abundance is maximized around 14:30 at low latitudes; the distribution is explained by the vertical transport by the semi-diurnal tide and consistent with the cloud-top velocity distribution. The local time and latitude dependence of <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> $\\mathrm{S}{\\mathrm{O}}_{\\mathrm{2}}$</annotation>\n </semantics></math> obtained is consistent with a three-dimensional general circulation model involving photochemical reactions. We also derived the long-term variations in <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> $\\mathrm{S}{\\mathrm{O}}_{\\mathrm{2}}$</annotation>\n </semantics></math> and the unidentified absorber. <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> $\\mathrm{S}{\\mathrm{O}}_{\\mathrm{2}}$</annotation>\n </semantics></math> increased from 2016 to 2019, showed no clear trend until early 2021, and decreased through 2022. No clear correlation was seen between the unidentified absorber and the mean super rotation speed, although it contributes to the solar heating rate.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 7","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008775","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
and the unidentified UV absorber are major absorbers in the near-ultraviolet region in the Venusian atmosphere and influence the climate system. We developed a method to retrieve and the imaginary part of the refractive index , a proxy for the unidentified absorber, from 15,002 pairs of 283 and images taken by the Ultraviolet imager (UVI) onboard Akatsuki. We obtained the distributions of and the unidentified absorber with high spatial resolution every 2 hours for about 6.5 years. We analyzed the local time and latitudinal distributions of and the unidentified absorber. The mixing ratio at the cloud top around altitude depends on latitude and local time, ranging from 80 to , within the range of previous observations. and the unidentified absorber are abundant at low latitudes and decrease toward mid-latitudes, which is attributed to vertical transport by the Hadley circulation. The abundance is maximized around 14:30 at low latitudes; the distribution is explained by the vertical transport by the semi-diurnal tide and consistent with the cloud-top velocity distribution. The local time and latitude dependence of obtained is consistent with a three-dimensional general circulation model involving photochemical reactions. We also derived the long-term variations in and the unidentified absorber. increased from 2016 to 2019, showed no clear trend until early 2021, and decreased through 2022. No clear correlation was seen between the unidentified absorber and the mean super rotation speed, although it contributes to the solar heating rate.
s_2 $\mathrm{S}{\mathrm{O}}_{\mathrm{2}}$和不明紫外线吸收剂是金星大气近紫外区的主要吸收剂,影响着气候系统。我们开发了一种方法来检索S O 2 $\mathrm{S}{\mathrm{O}}_{\mathrm{2}}$和折射率ni ${n}_{\mathrm{i}}$的虚部,这是未知吸收器的代理。从由赤月号上的紫外线成像仪(UVI)拍摄的15,002对283和365 n m $365\,\mathrm{n}\mathrm{m}$图像中提取。我们得到了每2小时高空间分辨率的S O 2 $\mathrm{S}{\mathrm{O}}_{\mathrm{2}}$和未知吸收体的分布,持续时间约为6.5年。我们分析了s02 $\ mathm {S}{\ mathm {O}}_{\ mathm{2}}$和未知吸收器的局地时间和纬向分布。在云顶的S O 2 {S}{\ mathm {O}}_{\ mathm{2}}$混合比在70k m $70左右,\ mathm {k}\ mathm {m}$高度取决于纬度和当地时间,从80到200 p p b $200\,\mathrm{p}\mathrm{p}\mathrm{b}$,在先前观测的范围内。S O 2 $\mathrm{S}{\mathrm{O}}_{\mathrm{2}}$和未识别的吸收体在低纬度丰富,向中纬度减少,这归因于Hadley环流的垂直输送。在低纬度地区,S O 2 $\ mathm {S}{\ mathm {O}}_{\ mathm{2}}$丰度在14:30左右达到最大值;这种分布可以用半日潮的垂直输送来解释,与云顶速度分布一致。得到的S O 2 $\mathrm{S}{\mathrm{O}}_{\mathrm{2}}$与当地时间和纬度的依赖关系符合涉及光化学反应的三维大气环流模型。我们还推导了s2 $\ mathm {S}{\ mathm {O}}_{\ mathm{2}}$和未知吸收器的长期变化。S O 2 $\mathrm{S}{\mathrm{O}}_{\mathrm{2}}$从2016年到2019年增长,直到2021年初没有明显趋势,到2022年下降。未识别的吸收体与平均超转速之间没有明显的相关性,尽管它有助于太阳加热速率。
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.