Ensemble Classification-Based Spectrum Sensing Using Support Vector Machine for Cognitive Radio Networks

IF 0.9 Q4 TELECOMMUNICATIONS
Manpreet Kaur, Raj Singh, Sandeep Kumar
{"title":"Ensemble Classification-Based Spectrum Sensing Using Support Vector Machine for Cognitive Radio Networks","authors":"Manpreet Kaur,&nbsp;Raj Singh,&nbsp;Sandeep Kumar","doi":"10.1002/itl2.70063","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>As next-generation communication systems require more spectrum-intensive applications, the challenge of spectrum scarcity becomes increasingly significant. A promising solution is cognitive radio networks (CRNs), which optimize the use of spectrum, a valuable and sharable natural resource that should not be wasted. To design efficient and sustainable networks for the future, it is crucial to ensure that spectrum sensing is not only accurate and rapid, but also energy-efficient. Spectrum sensing is a critical aspect of CRNs, and this study is mainly focused on it. This research employs a supervised Support Vector Machines (SVM) algorithm to detect primary users (PU). We analyze linear, polynomial, and Gaussian RBF SVM variants and enhance performance using an ensemble classification approach. Simulations show the ensemble classifier achieves the best results.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 4","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

As next-generation communication systems require more spectrum-intensive applications, the challenge of spectrum scarcity becomes increasingly significant. A promising solution is cognitive radio networks (CRNs), which optimize the use of spectrum, a valuable and sharable natural resource that should not be wasted. To design efficient and sustainable networks for the future, it is crucial to ensure that spectrum sensing is not only accurate and rapid, but also energy-efficient. Spectrum sensing is a critical aspect of CRNs, and this study is mainly focused on it. This research employs a supervised Support Vector Machines (SVM) algorithm to detect primary users (PU). We analyze linear, polynomial, and Gaussian RBF SVM variants and enhance performance using an ensemble classification approach. Simulations show the ensemble classifier achieves the best results.

认知无线电网络中基于集成分类的支持向量机频谱感知
随着下一代通信系统需要更多的频谱密集型应用,频谱稀缺的挑战日益突出。认知无线电网络(crn)是一个很有前景的解决方案,它优化了频谱的使用,频谱是一种宝贵的、可共享的自然资源,不应被浪费。为了设计未来高效和可持续的网络,确保频谱感知不仅准确、快速,而且节能是至关重要的。频谱感知是crn的一个重要方面,本文主要对其进行了研究。本研究采用有监督支持向量机(SVM)算法来检测主用户(PU)。我们分析线性、多项式和高斯RBF支持向量机变量,并使用集成分类方法提高性能。仿真结果表明,集成分类器取得了较好的分类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信