Thermosolutal magneto-convection in an anisotropic porous medium under oblique magnetic field modulation

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Vivek Lodwal, A. Benerji Babu
{"title":"Thermosolutal magneto-convection in an anisotropic porous medium under oblique magnetic field modulation","authors":"Vivek Lodwal,&nbsp;A. Benerji Babu","doi":"10.1016/j.chaos.2025.116723","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the linear and weakly nonlinear stability of thermosolutal magneto-convection in an anisotropic porous medium, subjected to a modulated oblique magnetic field comprising steady and time-periodic components. A linear stability analysis, employing the normal mode technique, examines the effects of the Chandrasekhar number, separation parameter, mechanical and thermal anisotropy parameters, Darcy number, and inclination angle on convective motion. Results reveal that an increase in the Chandrasekhar number enhances system stability by elevating the critical thermal Rayleigh number and stabilizing the system. For weakly nonlinear analysis, a power series expansion in the small amplitude of oblique magnetic field modulation is used, leading to the derivation of the nonlinear cubic Ginzburg–Landau equation via the regular asymptotic perturbation method. The Nusselt and Sherwood numbers are calculated to assess heat and mass transfer, with findings indicating that the Chandrasekhar number, magnetic Prandtl number, anisotropic parameters, and modulation frequency significantly stabilize the system. The modulation of the oblique magnetic field results in a maximum enhancement of 19% in heat transfer and 21% in mass transfer, compared to the unmodulated case. These results demonstrate the considerable impact of obliquely applied, time-varying magnetic field on the regulation of convective phenomena in porous medium.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116723"},"PeriodicalIF":5.6000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925007362","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the linear and weakly nonlinear stability of thermosolutal magneto-convection in an anisotropic porous medium, subjected to a modulated oblique magnetic field comprising steady and time-periodic components. A linear stability analysis, employing the normal mode technique, examines the effects of the Chandrasekhar number, separation parameter, mechanical and thermal anisotropy parameters, Darcy number, and inclination angle on convective motion. Results reveal that an increase in the Chandrasekhar number enhances system stability by elevating the critical thermal Rayleigh number and stabilizing the system. For weakly nonlinear analysis, a power series expansion in the small amplitude of oblique magnetic field modulation is used, leading to the derivation of the nonlinear cubic Ginzburg–Landau equation via the regular asymptotic perturbation method. The Nusselt and Sherwood numbers are calculated to assess heat and mass transfer, with findings indicating that the Chandrasekhar number, magnetic Prandtl number, anisotropic parameters, and modulation frequency significantly stabilize the system. The modulation of the oblique magnetic field results in a maximum enhancement of 19% in heat transfer and 21% in mass transfer, compared to the unmodulated case. These results demonstrate the considerable impact of obliquely applied, time-varying magnetic field on the regulation of convective phenomena in porous medium.
斜磁场调制下各向异性多孔介质中的热溶质磁对流
本研究探讨了各向异性多孔介质中热溶质磁对流的线性和弱非线性稳定性,受到由稳定和时间周期分量组成的调制斜磁场的影响。线性稳定性分析采用正态模态技术,考察了钱德拉塞卡数、分离参数、力学和热各向异性参数、达西数和倾角对对流运动的影响。结果表明,钱德拉塞卡数的增加通过提高临界热瑞利数和稳定系统来增强系统的稳定性。对于弱非线性分析,在斜磁场调制的小振幅处采用幂级数展开,通过正则渐近摄动方法推导出非线性三次金兹堡-朗道方程。计算了Nusselt和Sherwood数来评估传热和传质,结果表明钱德拉塞卡数、磁普朗特数、各向异性参数和调制频率显著地稳定了系统。与未调制的情况相比,调制斜磁场的结果最大增强了19%的传热和21%的传质。这些结果表明,倾斜施加时变磁场对多孔介质中对流现象的调节有相当大的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信