On the generalized dimensions of physical measures of chaotic flows

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Théophile Caby , Michele Gianfelice
{"title":"On the generalized dimensions of physical measures of chaotic flows","authors":"Théophile Caby ,&nbsp;Michele Gianfelice","doi":"10.1016/j.chaos.2025.116678","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that if <span><math><mi>μ</mi></math></span> is the physical measure of a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> flow in <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><mi>d</mi><mo>≥</mo><mn>3</mn><mo>,</mo></mrow></math></span> diffeomorphically conjugated to a suspension flow based on a Poincaré application <span><math><mi>R</mi></math></span> with physical measure <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>, then <span><math><mrow><msub><mrow><mi>D</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>(</mo><mi>μ</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>, where <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> denotes the generalized dimension of order <span><math><mrow><mi>q</mi><mo>≠</mo><mn>1</mn></mrow></math></span>. The proof is different from those presented in [BSau] and [PS] for uniformly hyperbolic flows, therefore it extends this result also to the case of flows generated by three-dimensional vector fields having a global singular hyperbolic attractor ([AP], [AMe]). We also show that a similar result holds for the local dimensions of <span><math><mi>μ</mi></math></span> and, under the additional hypothesis of exact-dimensionality of <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>, that our result extends to the case <span><math><mrow><mi>q</mi><mo>=</mo><mn>1</mn></mrow></math></span>. We apply these results to estimate the <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> spectrum associated with Rössler systems and turn our attention to Lorenz-like flows, proving the existence of their information dimension and giving a lower bound for their generalized dimensions.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116678"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925006915","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that if μ is the physical measure of a C2 flow in Rd,d3, diffeomorphically conjugated to a suspension flow based on a Poincaré application R with physical measure μR, then Dq(μ)=Dq(μR)+1, where Dq denotes the generalized dimension of order q1. The proof is different from those presented in [BSau] and [PS] for uniformly hyperbolic flows, therefore it extends this result also to the case of flows generated by three-dimensional vector fields having a global singular hyperbolic attractor ([AP], [AMe]). We also show that a similar result holds for the local dimensions of μ and, under the additional hypothesis of exact-dimensionality of μR, that our result extends to the case q=1. We apply these results to estimate the Dq spectrum associated with Rössler systems and turn our attention to Lorenz-like flows, proving the existence of their information dimension and giving a lower bound for their generalized dimensions.
混沌流物理测度的广义维数
在物理量为μR的poincar应用R上,证明了如果μ是Rd中C2流的物理量,d≥3,微分共轭到一个悬浮流,则Dq(μ)=Dq(μR)+1,其中Dq表示q阶≠1的广义维数。该证明与[BSau]和[PS]中提出的一致双曲流的证明不同,因此它也将该结果扩展到具有全局奇异双曲吸引子的三维矢量场产生的流的情况([AP], [AMe])。我们还证明了μ的局部维数也有类似的结果,并且在μ r的精确维数的附加假设下,我们的结果推广到q=1的情况。我们应用这些结果来估计与Rössler系统相关的Dq谱,并将我们的注意力转向类洛伦兹流,证明了它们的信息维的存在,并给出了它们的广义维的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信