Jason Cleland , Anna Gebruk , J. Murray Roberts , Dmitry Aleynik , Beverly McClenaghan , Rod Mather , Bridget Buxton , Steve W. Ross
{"title":"Megafauna of the RMS Titanic shipwreck and a nearby seamount ridge in the deep sea of the western North Atlantic","authors":"Jason Cleland , Anna Gebruk , J. Murray Roberts , Dmitry Aleynik , Beverly McClenaghan , Rod Mather , Bridget Buxton , Steve W. Ross","doi":"10.1016/j.dsr.2025.104544","DOIUrl":null,"url":null,"abstract":"<div><div>The biology of shipwrecks and hard substrata in the deep sea remains poorly explored. These complex habitats alter biodiversity on the deep seafloor and facilitate connecting populations over large distances. We analysed biological and environmental data collected at the RMS <em>Titanic</em> wreck site (3800 m) and a seamount ridge (2900 m) during the 2022 <em>Titanic</em> Expedition (15 June–25 July). The ridge is part of Seamount U, approximately 40 km southeast of the <em>Titanic,</em> and was explored for the first time on July 23, 2022. We analysed megafaunal occurrence across 920 images of the wreck site and 169 images of the ridge site, from digital video. The most common megafauna overall were Ophiuroidea, <em>Munidopsis</em> sp., Cushion-Encrusting Porifera, <em>Geodia</em> spp., and cold-water corals including Keratoisididae and Pennatuloidea. We describe the patterns in community composition across five benthic habitats, likely controlled by substrate type, local hydrodynamics, and food availability. The ridge yielded a higher number of observed megafauna and higher Shannon diversity (n = 73; H = 2.89) than the wreck (n = 21; H = 1.39). The communities associated with the ridge showed high dissimilarity to those at the wreck. We also explored the temporal variability of biofouling organisms on the <em>Titanic</em> using video from 1986 to 2022. We observed a net increase in <em>Chrysogorgia</em> sp. and <em>Lepidisis</em> sp. coral colonies over time with estimated average linear growth rates of up to 10 mm/yr and linear rusticle extensions of up to 14 mm/yr, raising questions about the wreck's ecological succession as it deteriorates.</div></div>","PeriodicalId":51009,"journal":{"name":"Deep-Sea Research Part I-Oceanographic Research Papers","volume":"223 ","pages":"Article 104544"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep-Sea Research Part I-Oceanographic Research Papers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967063725001025","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
The biology of shipwrecks and hard substrata in the deep sea remains poorly explored. These complex habitats alter biodiversity on the deep seafloor and facilitate connecting populations over large distances. We analysed biological and environmental data collected at the RMS Titanic wreck site (3800 m) and a seamount ridge (2900 m) during the 2022 Titanic Expedition (15 June–25 July). The ridge is part of Seamount U, approximately 40 km southeast of the Titanic, and was explored for the first time on July 23, 2022. We analysed megafaunal occurrence across 920 images of the wreck site and 169 images of the ridge site, from digital video. The most common megafauna overall were Ophiuroidea, Munidopsis sp., Cushion-Encrusting Porifera, Geodia spp., and cold-water corals including Keratoisididae and Pennatuloidea. We describe the patterns in community composition across five benthic habitats, likely controlled by substrate type, local hydrodynamics, and food availability. The ridge yielded a higher number of observed megafauna and higher Shannon diversity (n = 73; H = 2.89) than the wreck (n = 21; H = 1.39). The communities associated with the ridge showed high dissimilarity to those at the wreck. We also explored the temporal variability of biofouling organisms on the Titanic using video from 1986 to 2022. We observed a net increase in Chrysogorgia sp. and Lepidisis sp. coral colonies over time with estimated average linear growth rates of up to 10 mm/yr and linear rusticle extensions of up to 14 mm/yr, raising questions about the wreck's ecological succession as it deteriorates.
期刊介绍:
Deep-Sea Research Part I: Oceanographic Research Papers is devoted to the publication of the results of original scientific research, including theoretical work of evident oceanographic applicability; and the solution of instrumental or methodological problems with evidence of successful use. The journal is distinguished by its interdisciplinary nature and its breadth, covering the geological, physical, chemical and biological aspects of the ocean and its boundaries with the sea floor and the atmosphere. In addition to regular "Research Papers" and "Instruments and Methods" papers, briefer communications may be published as "Notes". Supplemental matter, such as extensive data tables or graphs and multimedia content, may be published as electronic appendices.