Dynamic oversampling-driven Kolmogorov–Arnold networks for credit card fraud detection: An ensemble approach to robust financial security

IF 4.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mohamed Akouhar , Mohamed Ouhssini , Mohamed El Fatini , Abdallah Abarda , Elhafed Agherrabi
{"title":"Dynamic oversampling-driven Kolmogorov–Arnold networks for credit card fraud detection: An ensemble approach to robust financial security","authors":"Mohamed Akouhar ,&nbsp;Mohamed Ouhssini ,&nbsp;Mohamed El Fatini ,&nbsp;Abdallah Abarda ,&nbsp;Elhafed Agherrabi","doi":"10.1016/j.eij.2025.100712","DOIUrl":null,"url":null,"abstract":"<div><div>Credit card fraud detection remains a persistent challenge in digital finance due to severe class imbalance, evolving fraud tactics, and the need for real-time analysis. Traditional detection systems often rely on static oversampling techniques and fixed feature sets, which limit their adaptability and robustness. This paper addresses these gaps by proposing a novel deep learning framework that combines Kolmogorov–Arnold Networks (KAN) with dynamic oversampling and ensemble feature selection. The dynamic oversampling strategy leverages both SMOTE and Generative Adversarial Networks (GANs) with variable sampling rates, reducing overfitting and enhancing generalization. Meanwhile, an ensemble feature selection mechanism integrates multiple metaheuristic algorithms to identify the most relevant features for fraud detection. The proposed approach, evaluated on three benchmark datasets, demonstrates strong improvements in adaptability over conventional deep learning models. This work offers a scalable, data-efficient solution for real-world fraud detection, improving resilience to data imbalance and evolving fraud patterns.</div></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":"31 ","pages":"Article 100712"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110866525001057","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Credit card fraud detection remains a persistent challenge in digital finance due to severe class imbalance, evolving fraud tactics, and the need for real-time analysis. Traditional detection systems often rely on static oversampling techniques and fixed feature sets, which limit their adaptability and robustness. This paper addresses these gaps by proposing a novel deep learning framework that combines Kolmogorov–Arnold Networks (KAN) with dynamic oversampling and ensemble feature selection. The dynamic oversampling strategy leverages both SMOTE and Generative Adversarial Networks (GANs) with variable sampling rates, reducing overfitting and enhancing generalization. Meanwhile, an ensemble feature selection mechanism integrates multiple metaheuristic algorithms to identify the most relevant features for fraud detection. The proposed approach, evaluated on three benchmark datasets, demonstrates strong improvements in adaptability over conventional deep learning models. This work offers a scalable, data-efficient solution for real-world fraud detection, improving resilience to data imbalance and evolving fraud patterns.
动态过采样驱动的信用卡欺诈检测Kolmogorov-Arnold网络:一种鲁棒金融安全的集成方法
由于严重的阶级不平衡、不断发展的欺诈策略以及对实时分析的需求,信用卡欺诈检测仍然是数字金融领域的一个持续挑战。传统的检测系统通常依赖于静态过采样技术和固定的特征集,这限制了它们的适应性和鲁棒性。本文通过提出一种新的深度学习框架来解决这些差距,该框架将Kolmogorov-Arnold网络(KAN)与动态过采样和集成特征选择相结合。动态过采样策略利用可变采样率的SMOTE和生成对抗网络(gan),减少过拟合并增强泛化。同时,一个集成的特征选择机制集成了多个元启发式算法来识别最相关的欺诈检测特征。在三个基准数据集上对所提出的方法进行了评估,表明与传统深度学习模型相比,该方法的适应性有了很大的提高。这项工作为现实世界的欺诈检测提供了一个可扩展的、数据高效的解决方案,提高了对数据不平衡和不断发展的欺诈模式的弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Egyptian Informatics Journal
Egyptian Informatics Journal Decision Sciences-Management Science and Operations Research
CiteScore
11.10
自引率
1.90%
发文量
59
审稿时长
110 days
期刊介绍: The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信