Whole process simulation for efficient proppant placement technology

0 ENERGY & FUELS
Yuxuan Liu , Liansong Wu , Jianchun Guo , Yutong Wu , Dingli Yan , Tao Zhang
{"title":"Whole process simulation for efficient proppant placement technology","authors":"Yuxuan Liu ,&nbsp;Liansong Wu ,&nbsp;Jianchun Guo ,&nbsp;Yutong Wu ,&nbsp;Dingli Yan ,&nbsp;Tao Zhang","doi":"10.1016/j.geoen.2025.214045","DOIUrl":null,"url":null,"abstract":"<div><div>This study used computational fluid dynamics (CFD) and discrete element method (DEM) to simulate the whole process of efficient proppant placement technology. The aggregation, dispersion, and deposition behaviors of fiber-proppant clusters in fractures were analyzed, exploring the mechanisms of fiber influence on proppant transport and flowback, and evaluating fracture conductivity. Fiber geometry is modeled with a multi-node structure, simulating fiber flexibility, while an adhesion force model describes surface modification. Model accuracy is validated with sedimentation and transport experiments in fiber suspensions.</div><div>Results show that forming fiber-proppant clusters changes the proppant placement pattern and improves fracture conductivity. During transport, fibers form a mesh that collides with proppants, reducing settling velocity. This promotes clustering and rapid migration to the fracture's far end, increasing the effective proppant placement area. During flowback, fibers interlace among particles, enhancing inter-particle bonding and stabilizing the sand pack. The cluster structure increases proppant porosity, improving oil and gas flow. Compared to the no-fiber case, adding 0.5 % fibers by proppant mass increases proppant placement by 58.63 %, reduces flowback by 17.2 %, and enhances fracture permeability by 1–2 orders of magnitude. Further analysis reveals the effects of fiber concentration, length, injection method, flowback velocity, and viscosity on proppant transport and flowback. The findings provide theoretical insights for optimizing fracturing parameters and developing modified fibers.</div></div>","PeriodicalId":100578,"journal":{"name":"Geoenergy Science and Engineering","volume":"254 ","pages":"Article 214045"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenergy Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949891025004038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study used computational fluid dynamics (CFD) and discrete element method (DEM) to simulate the whole process of efficient proppant placement technology. The aggregation, dispersion, and deposition behaviors of fiber-proppant clusters in fractures were analyzed, exploring the mechanisms of fiber influence on proppant transport and flowback, and evaluating fracture conductivity. Fiber geometry is modeled with a multi-node structure, simulating fiber flexibility, while an adhesion force model describes surface modification. Model accuracy is validated with sedimentation and transport experiments in fiber suspensions.
Results show that forming fiber-proppant clusters changes the proppant placement pattern and improves fracture conductivity. During transport, fibers form a mesh that collides with proppants, reducing settling velocity. This promotes clustering and rapid migration to the fracture's far end, increasing the effective proppant placement area. During flowback, fibers interlace among particles, enhancing inter-particle bonding and stabilizing the sand pack. The cluster structure increases proppant porosity, improving oil and gas flow. Compared to the no-fiber case, adding 0.5 % fibers by proppant mass increases proppant placement by 58.63 %, reduces flowback by 17.2 %, and enhances fracture permeability by 1–2 orders of magnitude. Further analysis reveals the effects of fiber concentration, length, injection method, flowback velocity, and viscosity on proppant transport and flowback. The findings provide theoretical insights for optimizing fracturing parameters and developing modified fibers.

Abstract Image

高效支撑剂充填技术的全过程模拟
本研究采用计算流体力学(CFD)和离散元法(DEM)对高效支撑剂投放技术的全过程进行了模拟。分析了纤维-支撑剂簇在裂缝中的聚集、分散和沉积行为,探讨了纤维对支撑剂运移和返排的影响机制,并对裂缝导流能力进行了评价。采用多节点结构对纤维几何结构进行建模,模拟纤维柔韧性,采用附着力模型描述纤维表面改性。通过纤维悬浮液的沉降和输运实验验证了模型的准确性。结果表明,纤维支撑剂簇的形成改变了支撑剂的分布模式,提高了裂缝导流能力。在运输过程中,纤维会形成网状物,与支撑剂碰撞,降低沉降速度。这促进了支撑剂的聚集和快速运移到裂缝的远端,增加了支撑剂的有效放置面积。在返排过程中,纤维在颗粒之间交织,增强了颗粒间的结合,稳定了砂层。簇状结构增加了支撑剂孔隙度,改善了油气流动。与不添加纤维的情况相比,添加0.5%纤维的支撑剂质量增加了58.63%的支撑剂放置量,减少了17.2%的返排,并提高了1-2个数量级的裂缝渗透率。进一步分析揭示了纤维浓度、长度、注入方式、返排速度和粘度对支撑剂输运和返排的影响。研究结果为优化压裂参数和开发改性纤维提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信