Machine learning-based equations for improved body composition estimation in Indian adults.

PLOS digital health Pub Date : 2025-06-23 eCollection Date: 2025-06-01 DOI:10.1371/journal.pdig.0000671
Nick Birk, Bharati Kulkarni, Santhi Bhogadi, Aastha Aggarwal, Gagandeep Kaur Walia, Vipin Gupta, Usha Rani, Hemant Mahajan, Sanjay Kinra, Poppy A C Mallinson
{"title":"Machine learning-based equations for improved body composition estimation in Indian adults.","authors":"Nick Birk, Bharati Kulkarni, Santhi Bhogadi, Aastha Aggarwal, Gagandeep Kaur Walia, Vipin Gupta, Usha Rani, Hemant Mahajan, Sanjay Kinra, Poppy A C Mallinson","doi":"10.1371/journal.pdig.0000671","DOIUrl":null,"url":null,"abstract":"<p><p>Bioelectrical impedance analysis (BIA) is commonly used as a lower-cost measurement of body composition as compared to dual-energy X-ray absorptiometry (DXA) in large-scale epidemiological studies. However, existing equations for body composition based on BIA measures may not generalize well to all populations. We combined BIA measurements (TANITA BC-418) with skinfold thickness, body circumferences, and grip strength to develop equations to predict six DXA-measured body composition parameters in a cohort of Indian adults using machine learning techniques. The participants were split into training (80%, 1297 males and 1133 females) and testing (20%, 318 males and 289 females) data to develop and validate the performance of equations for total body fat mass (kg), total body lean mass (kg), total body fat percentage (%), trunk fat percentage (%), L1-L4 fat percentage (%), and total appendicular lean mass (kg), separately for males and females. Our novel equations outperformed existing equations for each of these body composition parameters. For example, the mean absolute error for total body fat mass was 1.808 kg for males and 2.054 kg for females using the TANITA's built-in estimation algorithm, 2.105 kg for males and 2.995 kg for females using Durnin-Womersley equations, and 0.935 kg for males and 0.976 kg for females using our novel equations. Our findings demonstrate that supplementing body composition estimates from BIA devices with simple anthropometric measures can greatly improve the validity of BIA-measured body composition in South Asians. This approach could be extended to other BIA devices and populations to improve the performance of BIA devices. Our equations are made available for use by other researchers.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"4 6","pages":"e0000671"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12185013/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bioelectrical impedance analysis (BIA) is commonly used as a lower-cost measurement of body composition as compared to dual-energy X-ray absorptiometry (DXA) in large-scale epidemiological studies. However, existing equations for body composition based on BIA measures may not generalize well to all populations. We combined BIA measurements (TANITA BC-418) with skinfold thickness, body circumferences, and grip strength to develop equations to predict six DXA-measured body composition parameters in a cohort of Indian adults using machine learning techniques. The participants were split into training (80%, 1297 males and 1133 females) and testing (20%, 318 males and 289 females) data to develop and validate the performance of equations for total body fat mass (kg), total body lean mass (kg), total body fat percentage (%), trunk fat percentage (%), L1-L4 fat percentage (%), and total appendicular lean mass (kg), separately for males and females. Our novel equations outperformed existing equations for each of these body composition parameters. For example, the mean absolute error for total body fat mass was 1.808 kg for males and 2.054 kg for females using the TANITA's built-in estimation algorithm, 2.105 kg for males and 2.995 kg for females using Durnin-Womersley equations, and 0.935 kg for males and 0.976 kg for females using our novel equations. Our findings demonstrate that supplementing body composition estimates from BIA devices with simple anthropometric measures can greatly improve the validity of BIA-measured body composition in South Asians. This approach could be extended to other BIA devices and populations to improve the performance of BIA devices. Our equations are made available for use by other researchers.

基于机器学习的印度成年人身体成分估计改进方程。
在大规模流行病学研究中,与双能x射线吸收仪(DXA)相比,生物电阻抗分析(BIA)通常被用作一种成本较低的身体成分测量方法。然而,现有的基于BIA测量的身体成分方程可能不能很好地推广到所有人群。我们将BIA测量值(TANITA BC-418)与皮肤厚度、身体周长和握力相结合,利用机器学习技术建立方程,预测印度成年人队列中dxa测量的6个身体成分参数。将参与者分为训练组(80%,男性1297人,女性1133人)和测试组(20%,男性318人,女性289人),分别建立和验证雄性和雌性的总体脂质量(kg)、总体瘦质量(kg)、总体脂百分比(%)、躯干脂肪百分比(%)、L1-L4脂肪百分比(%)和总阑尾瘦质量(kg)方程的性能。我们的新方程优于这些身体成分参数的现有方程。例如,使用TANITA内置的估计算法,男性总脂肪质量的平均绝对误差为1.808 kg,女性为2.054 kg;使用durning - womersley方程,男性为2.105 kg,女性为2.995 kg;使用我们的新方程,男性为0.935 kg,女性为0.976 kg。我们的研究结果表明,用简单的人体测量测量来补充BIA装置的身体成分估计值可以大大提高BIA测量的南亚人身体成分的有效性。这种方法可以推广到其他BIA设备和人群,以提高BIA设备的性能。我们的方程式可供其他研究人员使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信