Stavroula Petroulia, Kathryn Hockemeyer, Shashank Tiwari, Pietro Berico, Sama Shamloo, Seyedeh Elnaz Banijamali, Eleazar Vega-Saenz de Miera, Yixiao Gong, Palaniraja Thandapani, Eric Wang, Jeffrey L Schloßhauer, Aristotelis Tsirigos, Iman Osman, Ioannis Aifantis, Jochen Imig
{"title":"Uncovering Novel lncRNAs Linked to Melanoma Growth and Migration with CRISPR Inhibition Screening.","authors":"Stavroula Petroulia, Kathryn Hockemeyer, Shashank Tiwari, Pietro Berico, Sama Shamloo, Seyedeh Elnaz Banijamali, Eleazar Vega-Saenz de Miera, Yixiao Gong, Palaniraja Thandapani, Eric Wang, Jeffrey L Schloßhauer, Aristotelis Tsirigos, Iman Osman, Ioannis Aifantis, Jochen Imig","doi":"10.1158/2767-9764.CRC-24-0416","DOIUrl":null,"url":null,"abstract":"<p><p>Melanoma being one of the most common and deadliest skin cancers has been increasing since the past decade. Patients at advanced stages of the disease have very poor prognoses, as opposed to at the earlier stages. Nowadays, the standard of care of advanced melanoma is resection, followed by immune checkpoint inhibition-based immunotherapy. However, a substantial proportion of patients either do not respond or develop resistance. This underscores a need for novel approaches and therapeutic targets as well as a better understanding of the mechanisms of melanoma pathogenesis. Long noncoding RNAs (lncRNA) comprise a poorly characterized class of functional players and promising targets in promoting malignancy. Certain lncRNAs have been identified to play integral roles in melanoma progression and drug resistance; however, systematic screens to uncover novel functional lncRNAs are scarce. In this study, we profile differentially expressed lncRNAs in patient-derived short-term metastatic cultures and BRAF-MEK inhibition-resistant cells. We conduct a focused growth-related CRISPR inhibition screen of overexpressed lncRNAs, validate, and functionally characterize lncRNA hits with respect to cellular growth, invasive capacities, and apoptosis in vitro as well as the transcriptomic impact of our lead candidate the novel lncRNA XLOC_030781. In sum, we extend the current knowledge of ncRNAs and their potential relevance in melanoma.</p><p><strong>Significance: </strong>LncRNAs have emerged as novel players in regulating many cellular aspects also in melanoma. The number of functional significances of most lncRNAs remains elusive. We provide a comprehensive strategy to identify functionally relevant lncRNAs in melanoma by combining expression profiling with CRISPR inhibition growths screens. Our results broaden the characterized lncRNAs as potential targets for future therapeutic applications.</p>","PeriodicalId":72516,"journal":{"name":"Cancer research communications","volume":" ","pages":"1102-1118"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238846/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/2767-9764.CRC-24-0416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Melanoma being one of the most common and deadliest skin cancers has been increasing since the past decade. Patients at advanced stages of the disease have very poor prognoses, as opposed to at the earlier stages. Nowadays, the standard of care of advanced melanoma is resection, followed by immune checkpoint inhibition-based immunotherapy. However, a substantial proportion of patients either do not respond or develop resistance. This underscores a need for novel approaches and therapeutic targets as well as a better understanding of the mechanisms of melanoma pathogenesis. Long noncoding RNAs (lncRNA) comprise a poorly characterized class of functional players and promising targets in promoting malignancy. Certain lncRNAs have been identified to play integral roles in melanoma progression and drug resistance; however, systematic screens to uncover novel functional lncRNAs are scarce. In this study, we profile differentially expressed lncRNAs in patient-derived short-term metastatic cultures and BRAF-MEK inhibition-resistant cells. We conduct a focused growth-related CRISPR inhibition screen of overexpressed lncRNAs, validate, and functionally characterize lncRNA hits with respect to cellular growth, invasive capacities, and apoptosis in vitro as well as the transcriptomic impact of our lead candidate the novel lncRNA XLOC_030781. In sum, we extend the current knowledge of ncRNAs and their potential relevance in melanoma.
Significance: LncRNAs have emerged as novel players in regulating many cellular aspects also in melanoma. The number of functional significances of most lncRNAs remains elusive. We provide a comprehensive strategy to identify functionally relevant lncRNAs in melanoma by combining expression profiling with CRISPR inhibition growths screens. Our results broaden the characterized lncRNAs as potential targets for future therapeutic applications.