Sebastian Duno-Miranda, David M Warshaw, Shane R Nelson
{"title":"ATLAS: Machine learning-enhanced filament analysis for the In Vitro Motility Assay.","authors":"Sebastian Duno-Miranda, David M Warshaw, Shane R Nelson","doi":"10.1016/j.bpr.2025.100221","DOIUrl":null,"url":null,"abstract":"<p><p>The In Vitro Motility Assay (IVMA) is a widely used experimental system to study the chemical and mechanical activity of myosin and other cytoskeletal motor proteins. In the IVMA, myosin molecules are bound to a glass surface and propel fluorescently labeled actin filaments across the surface, which are recorded using video fluorescence microscopy. The length and velocity of the actin filaments offer a measurement of the chemomechanical activity of the myosin motor proteins. Although the assay itself is well suited for high-throughput application, current video analysis approaches are slow, labor intensive, and subject to human bias. To address this shortfall, we introduce ATLAS, an open-source, platform independent software package that utilizes state-of-the-art machine learning algorithms to identify fluorescently labeled actin filaments and then track and analyze their motion in the IVMA. Utilizing both experimental data and a large array of simulated actomyosin motility movies, we demonstrate that ATLAS accurately and efficiently measures both the velocity and length of actin filaments across a broad range of experimental conditions.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":" ","pages":"100221"},"PeriodicalIF":2.7000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271436/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2025.100221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The In Vitro Motility Assay (IVMA) is a widely used experimental system to study the chemical and mechanical activity of myosin and other cytoskeletal motor proteins. In the IVMA, myosin molecules are bound to a glass surface and propel fluorescently labeled actin filaments across the surface, which are recorded using video fluorescence microscopy. The length and velocity of the actin filaments offer a measurement of the chemomechanical activity of the myosin motor proteins. Although the assay itself is well suited for high-throughput application, current video analysis approaches are slow, labor intensive, and subject to human bias. To address this shortfall, we introduce ATLAS, an open-source, platform independent software package that utilizes state-of-the-art machine learning algorithms to identify fluorescently labeled actin filaments and then track and analyze their motion in the IVMA. Utilizing both experimental data and a large array of simulated actomyosin motility movies, we demonstrate that ATLAS accurately and efficiently measures both the velocity and length of actin filaments across a broad range of experimental conditions.