TROPPO: tissue-specific reconstruction and phenotype prediction using omics data.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-05-19 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf113
Alexandre Oliveira, Jorge Ferreira, Vítor Vieira, Bruno Sá, Miguel Rocha
{"title":"<i>TROPPO</i>: tissue-specific reconstruction and phenotype prediction using omics data.","authors":"Alexandre Oliveira, Jorge Ferreira, Vítor Vieira, Bruno Sá, Miguel Rocha","doi":"10.1093/bioadv/vbaf113","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>The increasing availability of high-throughput technologies in systems biology has advanced predictive tools like genome-scale metabolic models. Despite this progress, integrating omics data to create accurate, context-specific metabolic models for different tissues or cells remains challenging. A significant issue is that many existing tools rely on proprietary software, which limits accessibility. We introduce TROPPO, an open-source Python library designed to overcome these challenges. TROPPO supports a wide range of context-specific reconstruction algorithms, provides validation methods for assessing generated models, and includes gap-filling algorithms to ensure model consistency, integrating well with other constraint-based tools.</p><p><strong>Availability and implementation: </strong>TROPPO is implemented in Python and is freely available at https://github.com/BioSystemsUM/TROPPO and https://pypi.org/project/TROPPO/.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf113"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12179386/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: The increasing availability of high-throughput technologies in systems biology has advanced predictive tools like genome-scale metabolic models. Despite this progress, integrating omics data to create accurate, context-specific metabolic models for different tissues or cells remains challenging. A significant issue is that many existing tools rely on proprietary software, which limits accessibility. We introduce TROPPO, an open-source Python library designed to overcome these challenges. TROPPO supports a wide range of context-specific reconstruction algorithms, provides validation methods for assessing generated models, and includes gap-filling algorithms to ensure model consistency, integrating well with other constraint-based tools.

Availability and implementation: TROPPO is implemented in Python and is freely available at https://github.com/BioSystemsUM/TROPPO and https://pypi.org/project/TROPPO/.

TROPPO:使用组学数据进行组织特异性重建和表型预测。
摘要:系统生物学中越来越多的高通量技术提供了先进的预测工具,如基因组尺度代谢模型。尽管取得了这些进展,但整合组学数据以创建准确的、针对不同组织或细胞的特定环境的代谢模型仍然具有挑战性。一个重要的问题是,许多现有的工具依赖于专有软件,这限制了可访问性。我们介绍TROPPO,这是一个开源Python库,旨在克服这些挑战。TROPPO支持广泛的上下文特定重建算法,提供评估生成模型的验证方法,并包括空白填充算法,以确保模型一致性,与其他基于约束的工具很好地集成。可用性和实现:TROPPO是用Python实现的,可以在https://github.com/BioSystemsUM/TROPPO和https://pypi.org/project/TROPPO/上免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信