Irrationality and transcendence questions in the 'poor man's adèle ring'.

IF 0.7 3区 数学 Q3 MATHEMATICS
Ramanujan Journal Pub Date : 2025-01-01 Epub Date: 2025-06-18 DOI:10.1007/s11139-025-01132-4
Florian Luca, Wadim Zudilin
{"title":"Irrationality and transcendence questions in the 'poor man's adèle ring'.","authors":"Florian Luca, Wadim Zudilin","doi":"10.1007/s11139-025-01132-4","DOIUrl":null,"url":null,"abstract":"<p><p>We discuss arithmetic questions related to the 'poor man's adèle ring' <math><mi>A</mi></math> whose elements are encoded by sequences <math> <msub><mrow><mo>(</mo> <msub><mi>t</mi> <mi>p</mi></msub> <mo>)</mo></mrow> <mi>p</mi></msub> </math> indexed by prime numbers, with each <math><msub><mi>t</mi> <mi>p</mi></msub> </math> viewed as a residue in <math><mrow><mi>Z</mi> <mo>/</mo> <mi>p</mi> <mi>Z</mi></mrow> </math> . Our main theorem is about the <math><mi>A</mi></math> -transcendence of the element <math> <msub><mrow><mo>(</mo> <msub><mi>F</mi> <mi>p</mi></msub> <mrow><mo>(</mo> <mi>q</mi> <mo>)</mo></mrow> <mo>)</mo></mrow> <mi>p</mi></msub> </math> , where <math> <mrow><msub><mi>F</mi> <mi>n</mi></msub> <mrow><mo>(</mo> <mi>q</mi> <mo>)</mo></mrow> </mrow> </math> (Schur's <i>q</i>-Fibonacci numbers) are the (1, 1)-entries of <math><mrow><mn>2</mn> <mo>×</mo> <mn>2</mn></mrow> </math> -matrices <dispformula> <math> <mrow> <mtable> <mtr> <mtd> <mrow> <mfenced> <mrow> <mtable> <mtr><mtd><mn>1</mn></mtd> <mtd><mn>1</mn></mtd> </mtr> <mtr> <mtd><mrow><mrow></mrow> <mn>1</mn></mrow> </mtd> <mtd><mn>0</mn></mtd> </mtr> </mtable> </mrow> </mfenced> <mfenced> <mrow> <mtable> <mtr><mtd><mn>1</mn></mtd> <mtd><mn>1</mn></mtd> </mtr> <mtr> <mtd><mrow><mrow></mrow> <mi>q</mi></mrow> </mtd> <mtd><mn>0</mn></mtd> </mtr> </mtable> </mrow> </mfenced> <mfenced> <mrow> <mtable> <mtr><mtd><mn>1</mn></mtd> <mtd><mn>1</mn></mtd> </mtr> <mtr> <mtd><mrow><mrow></mrow> <msup><mi>q</mi> <mn>2</mn></msup> </mrow> </mtd> <mtd><mn>0</mn></mtd> </mtr> </mtable> </mrow> </mfenced> <mo>⋯</mo> <mfenced> <mrow> <mtable> <mtr><mtd><mn>1</mn></mtd> <mtd><mn>1</mn></mtd> </mtr> <mtr> <mtd><mrow><mrow></mrow> <msup><mi>q</mi> <mrow><mi>n</mi> <mo>-</mo> <mn>2</mn></mrow> </msup> </mrow> </mtd> <mtd><mn>0</mn></mtd> </mtr> </mtable> </mrow> </mfenced> </mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> and <math><mrow><mi>q</mi> <mo>></mo> <mn>1</mn></mrow> </math> is an integer. This result was previously known for <math><mrow><mi>q</mi> <mo>></mo> <mn>1</mn></mrow> </math> square free under the GRH.</p>","PeriodicalId":54511,"journal":{"name":"Ramanujan Journal","volume":"67 4","pages":"88"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177006/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ramanujan Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11139-025-01132-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss arithmetic questions related to the 'poor man's adèle ring' A whose elements are encoded by sequences ( t p ) p indexed by prime numbers, with each t p viewed as a residue in Z / p Z . Our main theorem is about the A -transcendence of the element ( F p ( q ) ) p , where F n ( q ) (Schur's q-Fibonacci numbers) are the (1, 1)-entries of 2 × 2 -matrices 1 1 1 0 1 1 q 0 1 1 q 2 0 1 1 q n - 2 0 and q > 1 is an integer. This result was previously known for q > 1 square free under the GRH.

“穷人的ad圈”中的非理性与超越问题。
我们讨论了与“穷人ad环”A有关的算术问题,其元素由素数索引的序列(t p) p编码,每个t p被视为Z / p Z中的残数。我们的主要定理是关于元素(F p (q)) p的A -超越,其中F n (q)(舒尔的q-斐波那契数)是2 × 2矩阵1 1 1 1 1 1 1 q 0 1 1 q 2 0⋯1 1 q n - 20的(1,1)项,q > 1是一个整数。这个结果之前在GRH下是已知的qbbb101平方自由度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ramanujan Journal
Ramanujan Journal 数学-数学
CiteScore
1.40
自引率
14.30%
发文量
133
审稿时长
6-12 weeks
期刊介绍: The Ramanujan Journal publishes original papers of the highest quality in all areas of mathematics influenced by Srinivasa Ramanujan. His remarkable discoveries have made a great impact on several branches of mathematics, revealing deep and fundamental connections. The following prioritized listing of topics of interest to the journal is not intended to be exclusive but to demonstrate the editorial policy of attracting papers which represent a broad range of interest: Hyper-geometric and basic hyper-geometric series (q-series) * Partitions, compositions and combinatory analysis * Circle method and asymptotic formulae * Mock theta functions * Elliptic and theta functions * Modular forms and automorphic functions * Special functions and definite integrals * Continued fractions * Diophantine analysis including irrationality and transcendence * Number theory * Fourier analysis with applications to number theory * Connections between Lie algebras and q-series.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信