{"title":"Irrationality and transcendence questions in the 'poor man's adèle ring'.","authors":"Florian Luca, Wadim Zudilin","doi":"10.1007/s11139-025-01132-4","DOIUrl":null,"url":null,"abstract":"<p><p>We discuss arithmetic questions related to the 'poor man's adèle ring' <math><mi>A</mi></math> whose elements are encoded by sequences <math> <msub><mrow><mo>(</mo> <msub><mi>t</mi> <mi>p</mi></msub> <mo>)</mo></mrow> <mi>p</mi></msub> </math> indexed by prime numbers, with each <math><msub><mi>t</mi> <mi>p</mi></msub> </math> viewed as a residue in <math><mrow><mi>Z</mi> <mo>/</mo> <mi>p</mi> <mi>Z</mi></mrow> </math> . Our main theorem is about the <math><mi>A</mi></math> -transcendence of the element <math> <msub><mrow><mo>(</mo> <msub><mi>F</mi> <mi>p</mi></msub> <mrow><mo>(</mo> <mi>q</mi> <mo>)</mo></mrow> <mo>)</mo></mrow> <mi>p</mi></msub> </math> , where <math> <mrow><msub><mi>F</mi> <mi>n</mi></msub> <mrow><mo>(</mo> <mi>q</mi> <mo>)</mo></mrow> </mrow> </math> (Schur's <i>q</i>-Fibonacci numbers) are the (1, 1)-entries of <math><mrow><mn>2</mn> <mo>×</mo> <mn>2</mn></mrow> </math> -matrices <dispformula> <math> <mrow> <mtable> <mtr> <mtd> <mrow> <mfenced> <mrow> <mtable> <mtr><mtd><mn>1</mn></mtd> <mtd><mn>1</mn></mtd> </mtr> <mtr> <mtd><mrow><mrow></mrow> <mn>1</mn></mrow> </mtd> <mtd><mn>0</mn></mtd> </mtr> </mtable> </mrow> </mfenced> <mfenced> <mrow> <mtable> <mtr><mtd><mn>1</mn></mtd> <mtd><mn>1</mn></mtd> </mtr> <mtr> <mtd><mrow><mrow></mrow> <mi>q</mi></mrow> </mtd> <mtd><mn>0</mn></mtd> </mtr> </mtable> </mrow> </mfenced> <mfenced> <mrow> <mtable> <mtr><mtd><mn>1</mn></mtd> <mtd><mn>1</mn></mtd> </mtr> <mtr> <mtd><mrow><mrow></mrow> <msup><mi>q</mi> <mn>2</mn></msup> </mrow> </mtd> <mtd><mn>0</mn></mtd> </mtr> </mtable> </mrow> </mfenced> <mo>⋯</mo> <mfenced> <mrow> <mtable> <mtr><mtd><mn>1</mn></mtd> <mtd><mn>1</mn></mtd> </mtr> <mtr> <mtd><mrow><mrow></mrow> <msup><mi>q</mi> <mrow><mi>n</mi> <mo>-</mo> <mn>2</mn></mrow> </msup> </mrow> </mtd> <mtd><mn>0</mn></mtd> </mtr> </mtable> </mrow> </mfenced> </mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> and <math><mrow><mi>q</mi> <mo>></mo> <mn>1</mn></mrow> </math> is an integer. This result was previously known for <math><mrow><mi>q</mi> <mo>></mo> <mn>1</mn></mrow> </math> square free under the GRH.</p>","PeriodicalId":54511,"journal":{"name":"Ramanujan Journal","volume":"67 4","pages":"88"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177006/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ramanujan Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11139-025-01132-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We discuss arithmetic questions related to the 'poor man's adèle ring' whose elements are encoded by sequences indexed by prime numbers, with each viewed as a residue in . Our main theorem is about the -transcendence of the element , where (Schur's q-Fibonacci numbers) are the (1, 1)-entries of -matrices and is an integer. This result was previously known for square free under the GRH.
期刊介绍:
The Ramanujan Journal publishes original papers of the highest quality in all areas of mathematics influenced by Srinivasa Ramanujan. His remarkable discoveries have made a great impact on several branches of mathematics, revealing deep and fundamental connections.
The following prioritized listing of topics of interest to the journal is not intended to be exclusive but to demonstrate the editorial policy of attracting papers which represent a broad range of interest:
Hyper-geometric and basic hyper-geometric series (q-series) * Partitions, compositions and combinatory analysis * Circle method and asymptotic formulae * Mock theta functions * Elliptic and theta functions * Modular forms and automorphic functions * Special functions and definite integrals * Continued fractions * Diophantine analysis including irrationality and transcendence * Number theory * Fourier analysis with applications to number theory * Connections between Lie algebras and q-series.