{"title":"Subword Complexes and Kalai's Conjecture on Reconstruction of Spheres.","authors":"Cesar Ceballos, Joseph Doolittle","doi":"10.1007/s00454-025-00733-6","DOIUrl":null,"url":null,"abstract":"<p><p>A famous theorem in polytope theory states that the combinatorial type of a simplicial polytope is completely determined by its facet-ridge graph. This celebrated result was proven by Blind and Mani (Aequationes Math 34(2-3):287-297, 1987, 10.1007/BF01830678), via a non-constructive proof using topological tools from homology theory. An elegant constructive proof was given by Kalai shortly after. In their original paper, Blind and Mani asked whether their result can be extended to simplicial spheres, and a positive answer to their question was conjectured by Kalai (2009, https://gilkalai.wordpress.com/2009/01/16/telling-a-simple-polytope-from-its-graph/). In this paper, we show that Kalai's conjecture holds in the particular case of Knutson and Miller's spherical subword complexes. This family of simplicial spheres arises in the context of Coxeter groups, and is conjectured to be polytopal. In contrast, not all manifolds are reconstructible. We show two explicit examples, namely the torus and the projective plane.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"74 1","pages":"23-48"},"PeriodicalIF":0.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177012/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-025-00733-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/13 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
A famous theorem in polytope theory states that the combinatorial type of a simplicial polytope is completely determined by its facet-ridge graph. This celebrated result was proven by Blind and Mani (Aequationes Math 34(2-3):287-297, 1987, 10.1007/BF01830678), via a non-constructive proof using topological tools from homology theory. An elegant constructive proof was given by Kalai shortly after. In their original paper, Blind and Mani asked whether their result can be extended to simplicial spheres, and a positive answer to their question was conjectured by Kalai (2009, https://gilkalai.wordpress.com/2009/01/16/telling-a-simple-polytope-from-its-graph/). In this paper, we show that Kalai's conjecture holds in the particular case of Knutson and Miller's spherical subword complexes. This family of simplicial spheres arises in the context of Coxeter groups, and is conjectured to be polytopal. In contrast, not all manifolds are reconstructible. We show two explicit examples, namely the torus and the projective plane.
期刊介绍:
Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.