Progress in the application of mesenchymal stem cells to attenuate apoptosis in diabetic kidney disease.

IF 4.2 3区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Ping Nie, Wei Qin, Wei-Chen Nie, Bing Li
{"title":"Progress in the application of mesenchymal stem cells to attenuate apoptosis in diabetic kidney disease.","authors":"Ping Nie, Wei Qin, Wei-Chen Nie, Bing Li","doi":"10.4239/wjd.v16.i6.105711","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic kidney disease (DKD) has a high incidence and mortality rate and lacks effective preventive and therapeutic methods. Apoptosis is one of the main reasons for the occurrence and development of DKD. Mesenchymal stem cells (MSCs) have shown great promise in tissue regeneration for DKD treatment and have protective effects against DKD, including decreased blood glucose and urinary protein levels and improved renal function. MSCs can directly differentiate into kidney cells or act <i>via</i> paracrine mechanisms to reduce apoptosis in DKD by modulating signaling pathways. MSC-derived extracellular vesicles (MSC-EVs) mitigate apoptosis and DKD-related symptoms by transferring miRNAs to target cells or organs. However, studies on the regulatory mechanisms of MSCs and MSC-EVs in apoptosis in DKD are insufficient. This review comprehensively examines the mechanisms of apoptosis in DKD and research progress regarding the roles of MSCs and MSC-EVs in the disease process.</p>","PeriodicalId":48607,"journal":{"name":"World Journal of Diabetes","volume":"16 6","pages":"105711"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12179905/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4239/wjd.v16.i6.105711","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetic kidney disease (DKD) has a high incidence and mortality rate and lacks effective preventive and therapeutic methods. Apoptosis is one of the main reasons for the occurrence and development of DKD. Mesenchymal stem cells (MSCs) have shown great promise in tissue regeneration for DKD treatment and have protective effects against DKD, including decreased blood glucose and urinary protein levels and improved renal function. MSCs can directly differentiate into kidney cells or act via paracrine mechanisms to reduce apoptosis in DKD by modulating signaling pathways. MSC-derived extracellular vesicles (MSC-EVs) mitigate apoptosis and DKD-related symptoms by transferring miRNAs to target cells or organs. However, studies on the regulatory mechanisms of MSCs and MSC-EVs in apoptosis in DKD are insufficient. This review comprehensively examines the mechanisms of apoptosis in DKD and research progress regarding the roles of MSCs and MSC-EVs in the disease process.

间充质干细胞在减轻糖尿病肾病细胞凋亡中的应用进展。
糖尿病肾病(DKD)发病率高、死亡率高,缺乏有效的预防和治疗方法。细胞凋亡是DKD发生发展的主要原因之一。间充质干细胞(MSCs)在DKD治疗的组织再生中显示出巨大的前景,并且对DKD具有保护作用,包括降低血糖和尿蛋白水平以及改善肾功能。MSCs可以直接分化为肾细胞或通过旁分泌机制通过调节信号通路减少DKD的凋亡。msc来源的细胞外囊泡(msc - ev)通过将mirna转移到靶细胞或器官来减轻凋亡和dkd相关症状。然而,关于MSCs和msc - ev在DKD细胞凋亡中的调控机制的研究还不够。本文综述了DKD中细胞凋亡的机制以及MSCs和msc - ev在疾病过程中的作用的研究进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
World Journal of Diabetes
World Journal of Diabetes ENDOCRINOLOGY & METABOLISM-
自引率
2.40%
发文量
909
期刊介绍: The WJD is a high-quality, peer reviewed, open-access journal. The primary task of WJD is to rapidly publish high-quality original articles, reviews, editorials, and case reports in the field of diabetes. In order to promote productive academic communication, the peer review process for the WJD is transparent; to this end, all published manuscripts are accompanied by the anonymized reviewers’ comments as well as the authors’ responses. The primary aims of the WJD are to improve diagnostic, therapeutic and preventive modalities and the skills of clinicians and to guide clinical practice in diabetes. Scope: Diabetes Complications, Experimental Diabetes Mellitus, Type 1 Diabetes Mellitus, Type 2 Diabetes Mellitus, Diabetes, Gestational, Diabetic Angiopathies, Diabetic Cardiomyopathies, Diabetic Coma, Diabetic Ketoacidosis, Diabetic Nephropathies, Diabetic Neuropathies, Donohue Syndrome, Fetal Macrosomia, and Prediabetic State.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信