Robotic optimization of powdered beverages leveraging computer vision and Bayesian optimization.

IF 2.9 Q2 ROBOTICS
Frontiers in Robotics and AI Pub Date : 2025-06-09 eCollection Date: 2025-01-01 DOI:10.3389/frobt.2025.1603729
Emilia Szymańska, Josie Hughes
{"title":"Robotic optimization of powdered beverages leveraging computer vision and Bayesian optimization.","authors":"Emilia Szymańska, Josie Hughes","doi":"10.3389/frobt.2025.1603729","DOIUrl":null,"url":null,"abstract":"<p><p>The growing demand for innovative research in the food industry is driving the adoption of robots in large-scale experimentation, a shift that offers increased precision, repeatability, and efficiency in product manufacturing and evaluation. This paper addresses this need by introducing a robotic system that extends automation into optimization and closed-loop quality control, using powdered cappuccino preparation as a case study. By leveraging Bayesian Optimization and image analysis, the robot explores the parameter space to identify the ideal conditions for producing cappuccino with high foam quality. A computer vision-based feedback loop further improves the beverage by mimicking human-like corrections in preparation process. Findings demonstrate the effectiveness of robotic automation in achieving high repeatability and enabling extensive exploration of system parameters, paving the way for more advanced and reliable food product development.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"12 ","pages":"1603729"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183032/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2025.1603729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The growing demand for innovative research in the food industry is driving the adoption of robots in large-scale experimentation, a shift that offers increased precision, repeatability, and efficiency in product manufacturing and evaluation. This paper addresses this need by introducing a robotic system that extends automation into optimization and closed-loop quality control, using powdered cappuccino preparation as a case study. By leveraging Bayesian Optimization and image analysis, the robot explores the parameter space to identify the ideal conditions for producing cappuccino with high foam quality. A computer vision-based feedback loop further improves the beverage by mimicking human-like corrections in preparation process. Findings demonstrate the effectiveness of robotic automation in achieving high repeatability and enabling extensive exploration of system parameters, paving the way for more advanced and reliable food product development.

利用计算机视觉和贝叶斯优化的粉状饮料机器人优化。
食品行业对创新研究日益增长的需求正在推动机器人在大规模实验中的应用,这一转变在产品制造和评估中提供了更高的精度、可重复性和效率。本文通过引入一种机器人系统来解决这一需求,该系统将自动化扩展到优化和闭环质量控制中,并以卡布奇诺粉末制备为案例研究。通过贝叶斯优化和图像分析,机器人探索参数空间,以确定生产高泡沫质量的卡布奇诺的理想条件。基于计算机视觉的反馈回路通过模仿人类在制备过程中的纠正来进一步改善饮料。研究结果证明了机器人自动化在实现高重复性和广泛探索系统参数方面的有效性,为更先进、更可靠的食品开发铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
5.90%
发文量
355
审稿时长
14 weeks
期刊介绍: Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信