Improving optimal prompt learning through multilayer fusion and latent dirichlet allocation.

IF 3 Q2 ROBOTICS
Frontiers in Robotics and AI Pub Date : 2025-06-06 eCollection Date: 2025-01-01 DOI:10.3389/frobt.2025.1579990
Qinghua Chen, Jessica Korneder, Osamah A Rawashdeh, Yanfeng Wang, Wing-Yue Geoffrey Louie
{"title":"Improving optimal prompt learning through multilayer fusion and latent dirichlet allocation.","authors":"Qinghua Chen, Jessica Korneder, Osamah A Rawashdeh, Yanfeng Wang, Wing-Yue Geoffrey Louie","doi":"10.3389/frobt.2025.1579990","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in few-shot learning have demonstrated the potential of prompt-based techniques with pre-trained models, eliminating the need for extensive fine-tuning. However, challenges such as obtaining optimal prompts and addressing data scarcity in specialized domains remain challenging. We introduce a novel framework incorporating a Global Attention Mechanism (GAM) that effectively integrates features from multiple layers of pre-trained language models, enhanced by Latent Dirichlet Allocation (LDA) generated topic features for prompt optimization. Extensive experiments on four datasets consistently show that our approach outperforms state of-the-art baselines. The strategic integration of GAM with layer-specific features and LDA topics proves particularly effective in extracting valuable latent information for few-shot learning scenarios, yielding significant improvements in specialized domains, as evidenced by enhanced performance in therapeutic dialogue classification within a Applied Behavior Analysis clinical dataset.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"12 ","pages":"1579990"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12178875/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2025.1579990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in few-shot learning have demonstrated the potential of prompt-based techniques with pre-trained models, eliminating the need for extensive fine-tuning. However, challenges such as obtaining optimal prompts and addressing data scarcity in specialized domains remain challenging. We introduce a novel framework incorporating a Global Attention Mechanism (GAM) that effectively integrates features from multiple layers of pre-trained language models, enhanced by Latent Dirichlet Allocation (LDA) generated topic features for prompt optimization. Extensive experiments on four datasets consistently show that our approach outperforms state of-the-art baselines. The strategic integration of GAM with layer-specific features and LDA topics proves particularly effective in extracting valuable latent information for few-shot learning scenarios, yielding significant improvements in specialized domains, as evidenced by enhanced performance in therapeutic dialogue classification within a Applied Behavior Analysis clinical dataset.

Abstract Image

Abstract Image

Abstract Image

通过多层融合和潜在狄利克雷分配改进最优提示学习。
最近在几次射击学习方面的进展已经证明了预先训练模型的基于提示的技术的潜力,消除了大量微调的需要。然而,诸如获得最佳提示和解决专业领域的数据稀缺性等挑战仍然具有挑战性。我们引入了一个包含全局注意机制(GAM)的新框架,该框架有效地集成了来自多层预训练语言模型的特征,并通过潜在狄利克雷分配(LDA)生成的主题特征进行增强,以实现快速优化。在四个数据集上进行的大量实验一致表明,我们的方法优于最先进的基线。GAM与特定层的特征和LDA主题的战略集成被证明在为少量学习场景提取有价值的潜在信息方面特别有效,在专门领域产生了显着改进,正如应用行为分析临床数据集中治疗对话分类的增强性能所证明的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
5.90%
发文量
355
审稿时长
14 weeks
期刊介绍: Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信