Yicheng Yang, Yongshan Wan, Jianjun Chen, Hao Chen, Yuncong Li, Rafael Muñoz-Carpena, Yulin Zheng, Jinsheng Huang, Yue Zhang, Bin Gao
{"title":"Ball-Milled Spent Coffee Ground Biochar Effectively Removes Caffeine from Water.","authors":"Yicheng Yang, Yongshan Wan, Jianjun Chen, Hao Chen, Yuncong Li, Rafael Muñoz-Carpena, Yulin Zheng, Jinsheng Huang, Yue Zhang, Bin Gao","doi":"10.3390/w17060881","DOIUrl":null,"url":null,"abstract":"<p><p>Caffeine in aquatic ecosystems is an emerging contaminant causing significant environmental concern. In this work, spent coffee ground (SCG) was pyrolyzed at 300, 450, and 600 °C to produce pristine SCG biochars (CG), which were then ball-milled to produce ball-milled SCG biochars (BMCG). A batch experiment with ball-milled and pristine biochars showed that ball-milled biochars pyrolyzed at 450 °C and 600 °C had the highest capacities to adsorb caffeine. Subsequently, ball-milled CG450 (BMCG450) was selected for further analysis. The results showed that ball milling dramatically augmented the specific surface area and oxygen-containing functional groups of the biochar. The Langmuir maximum caffeine adsorption capacity was 82.65 mg/g. Both solution pH and ionic strength affected caffeine removal by BMCG450. As pH increased, increased electrostatic repulsion limited caffeine adsorption onto the biochar. However, an increase in ion strength slightly enhanced caffeine adsorption because of the electrostatic screening effect of cations. The ball-milled SCG biochar also showed high adsorption efficiency in a completely mixed flow reactor under continuous flow conditions. Our study indicates that ball-milled SCG biochar at 450 °C can serve as a viable sorbent for the removal of caffeine from water.</p>","PeriodicalId":23788,"journal":{"name":"Water","volume":"17 6","pages":"881"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12181942/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/w17060881","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Caffeine in aquatic ecosystems is an emerging contaminant causing significant environmental concern. In this work, spent coffee ground (SCG) was pyrolyzed at 300, 450, and 600 °C to produce pristine SCG biochars (CG), which were then ball-milled to produce ball-milled SCG biochars (BMCG). A batch experiment with ball-milled and pristine biochars showed that ball-milled biochars pyrolyzed at 450 °C and 600 °C had the highest capacities to adsorb caffeine. Subsequently, ball-milled CG450 (BMCG450) was selected for further analysis. The results showed that ball milling dramatically augmented the specific surface area and oxygen-containing functional groups of the biochar. The Langmuir maximum caffeine adsorption capacity was 82.65 mg/g. Both solution pH and ionic strength affected caffeine removal by BMCG450. As pH increased, increased electrostatic repulsion limited caffeine adsorption onto the biochar. However, an increase in ion strength slightly enhanced caffeine adsorption because of the electrostatic screening effect of cations. The ball-milled SCG biochar also showed high adsorption efficiency in a completely mixed flow reactor under continuous flow conditions. Our study indicates that ball-milled SCG biochar at 450 °C can serve as a viable sorbent for the removal of caffeine from water.
期刊介绍:
Water (ISSN 2073-4441) is an international and cross-disciplinary scholarly journal covering all aspects of water including water science and technology, and the hydrology, ecology and management of water resources. It publishes regular research papers, critical reviews and short communications, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.