Elena Sindram, Marie-Celine Deau, Laure-Anne Ligeon, Pablo Sanchez-Martin, Sigrun Nestel, Sophie Jung, Stefanie Ruf, Pankaj Mishra, Michele Proietti, Stefan Günther, Kathrin Thedieck, Eleni Roussa, Angelika Rambold, Christian Münz, Claudine Kraft, Bodo Grimbacher, Laura Gámez-Díaz
{"title":"LRBA deficiency impairs autophagy and contributes to enhanced antigen presentation and T-cell dysregulation.","authors":"Elena Sindram, Marie-Celine Deau, Laure-Anne Ligeon, Pablo Sanchez-Martin, Sigrun Nestel, Sophie Jung, Stefanie Ruf, Pankaj Mishra, Michele Proietti, Stefan Günther, Kathrin Thedieck, Eleni Roussa, Angelika Rambold, Christian Münz, Claudine Kraft, Bodo Grimbacher, Laura Gámez-Díaz","doi":"10.1038/s44319-025-00504-7","DOIUrl":null,"url":null,"abstract":"<p><p>Reduced autophagy is associated with the aberrant humoral response observed in lipopolysaccharide-responsive beige-like anchor protein (LRBA) deficiency; however, the molecular mechanisms and their impact on T-cell responses remain poorly understood. We identify two novel LRBA interactors, phosphoinositide 3-kinase regulatory subunit 4 (PIK3R4) and FYVE And Coiled-Coil Domain Autophagy Adaptor 1 (FYCO1), which each play key roles in autophagy. PIK3R4 facilitates the production of phosphatidylinositol-3 phosphate (PI(3)P) that promotes autophagosome formation and autophagosome-lysosome fusion, whereas FYCO1 supports autophagosome movement. LRBA-knockout (KO) cells show impaired PI(3)P production, reduced autophagosome-lysosome fusion, accumulation of enlarged autophagosomes, and decreased cargo degradation. In line with the role of autophagy as a major degradation system for MHC-II loading and antigen presentation, we observe increased numbers of MHC class II and LC3 vesicles, along with enhanced antigen presentation in absence of LRBA, resulting in a higher production of proinflammatory cytokines from T cells in vitro. Our work suggests a novel biological role of LRBA controlling antigen presentation and T-cell responses by positively regulating autophagy, which may contribute to T-cell immune dysregulation observed in LRBA-deficient patients.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-025-00504-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Reduced autophagy is associated with the aberrant humoral response observed in lipopolysaccharide-responsive beige-like anchor protein (LRBA) deficiency; however, the molecular mechanisms and their impact on T-cell responses remain poorly understood. We identify two novel LRBA interactors, phosphoinositide 3-kinase regulatory subunit 4 (PIK3R4) and FYVE And Coiled-Coil Domain Autophagy Adaptor 1 (FYCO1), which each play key roles in autophagy. PIK3R4 facilitates the production of phosphatidylinositol-3 phosphate (PI(3)P) that promotes autophagosome formation and autophagosome-lysosome fusion, whereas FYCO1 supports autophagosome movement. LRBA-knockout (KO) cells show impaired PI(3)P production, reduced autophagosome-lysosome fusion, accumulation of enlarged autophagosomes, and decreased cargo degradation. In line with the role of autophagy as a major degradation system for MHC-II loading and antigen presentation, we observe increased numbers of MHC class II and LC3 vesicles, along with enhanced antigen presentation in absence of LRBA, resulting in a higher production of proinflammatory cytokines from T cells in vitro. Our work suggests a novel biological role of LRBA controlling antigen presentation and T-cell responses by positively regulating autophagy, which may contribute to T-cell immune dysregulation observed in LRBA-deficient patients.
期刊介绍:
EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings.
The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that:
Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels.
Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies.
Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding.
Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts.
EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry.