{"title":"A direct neural signature of serial dependence in working memory.","authors":"Cora Fischer, Jochen Kaiser, Christoph Bledowski","doi":"10.7554/eLife.99478","DOIUrl":null,"url":null,"abstract":"<p><p>Serial dependence describes the phenomenon that current object representations are attracted to previously encoded and reported representations. While attractive biases have been observed reliably in behavior, a direct neural correlate has not been established. Previous studies have either shown a reactivation of past information without observing a neural signal related to the bias of the current information, or a repulsive distortion of current neural representations contrasting the behavioral bias. The present study recorded neural signals with magnetoencephalography (MEG) during a working memory task to identify neural correlates of serial dependence. Participants encoded and memorized two sequentially presented motion directions per trial, one of which was later retro-cued for report. Multivariate analyses provided reliable reconstructions of both motion directions. Importantly, the reconstructed directions in the current trial were attractively shifted toward the target direction of the previous trial. This neural bias mirrored the behavioral attractive bias, thus reflecting a direct neural signature of serial dependence. The use of a retro-cue task in combination with MEG allowed us to determine that this neural bias emerged at later, post-encoding time points. This timing suggests that serial dependence in working memory affects memorized information during read-out and reactivation processes that happen after the initial encoding.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.99478","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Serial dependence describes the phenomenon that current object representations are attracted to previously encoded and reported representations. While attractive biases have been observed reliably in behavior, a direct neural correlate has not been established. Previous studies have either shown a reactivation of past information without observing a neural signal related to the bias of the current information, or a repulsive distortion of current neural representations contrasting the behavioral bias. The present study recorded neural signals with magnetoencephalography (MEG) during a working memory task to identify neural correlates of serial dependence. Participants encoded and memorized two sequentially presented motion directions per trial, one of which was later retro-cued for report. Multivariate analyses provided reliable reconstructions of both motion directions. Importantly, the reconstructed directions in the current trial were attractively shifted toward the target direction of the previous trial. This neural bias mirrored the behavioral attractive bias, thus reflecting a direct neural signature of serial dependence. The use of a retro-cue task in combination with MEG allowed us to determine that this neural bias emerged at later, post-encoding time points. This timing suggests that serial dependence in working memory affects memorized information during read-out and reactivation processes that happen after the initial encoding.
期刊介绍:
eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as:
Research Articles: Detailed reports of original research findings.
Short Reports: Concise presentations of significant findings that do not warrant a full-length research article.
Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research.
Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field.
Scientific Correspondence: Short communications that comment on or provide additional information related to published articles.
Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.