{"title":"Evaluation of the efficient propagation of <i>Rhizophagus intraradices</i> and its inoculation effects on rice.","authors":"Feng Shi, Xinghao Wang, Xue He, Tianle Xu, Mingguo Jiang, Wei Chang, Fuqiang Song","doi":"10.1128/aem.00558-25","DOIUrl":null,"url":null,"abstract":"<p><p>Arbuscular mycorrhizal fungi (AMF) are a key group of fungi closely associated with agricultural production within soil microbial communities. However, large-scale propagation of AMF inoculum faces various challenges, limiting our ability to obtain and utilize these inocula on a broad scale. To address this, we designed a monolayer mesh cultivation system employing a hydroponic approach for propagating arbuscular mycorrhizal fungi, specifically <i>Rhizophagus intraradices</i>. We conducted a comparative analysis of quality and inoculation efficiency between the water culture inoculum (w-Ri) and traditional soil-based inoculum (s-Ri). Our findings revealed the following. (i) The propagation cycle of w-Ri inoculum is 35 days and only 23% of the 150-day cycle required for s-Ri inoculum. (ii) The spore density, viability, and purity of w-Ri inoculum are 5.25 times, 1.09 times, and 1.26 times higher, respectively, than those of s-Ri inoculum. (iii) The w-Ri inoculants demonstrate effects on enhancing rice biomass, root morphology, and photosynthesis that are consistent with those of the s-Ri inoculants, while requiring only 10% of the application rate of the s-Ri inoculants. These results provide crucial theoretical references for establishing a pure and efficient arbuscular mycorrhizal fungus propagation system and its promotion and application.IMPORTANCEThe development of a monolayer mesh hydroponic cultivation system for propagating <i>Rhizophagus intraradices</i> offers a significant advancement in overcoming the challenges of large-scale AMF inoculum production, which is critical for enhancing agricultural sustainability. The comparative analysis of water culture-based (w-Ri) and traditional soil-based (s-Ri) inoculum demonstrates the superior efficiency of the w-Ri system in terms of propagation speed, spore density, and inoculum quality, highlighting its potential for large-scale application in farming practices. The findings that w-Ri inoculants are equally effective in promoting plant growth while requiring only a fraction of the application rate of s-Ri inoculants underscore the potential for reducing both cost and environmental impact in agricultural inoculation practices.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0055825"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.00558-25","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Arbuscular mycorrhizal fungi (AMF) are a key group of fungi closely associated with agricultural production within soil microbial communities. However, large-scale propagation of AMF inoculum faces various challenges, limiting our ability to obtain and utilize these inocula on a broad scale. To address this, we designed a monolayer mesh cultivation system employing a hydroponic approach for propagating arbuscular mycorrhizal fungi, specifically Rhizophagus intraradices. We conducted a comparative analysis of quality and inoculation efficiency between the water culture inoculum (w-Ri) and traditional soil-based inoculum (s-Ri). Our findings revealed the following. (i) The propagation cycle of w-Ri inoculum is 35 days and only 23% of the 150-day cycle required for s-Ri inoculum. (ii) The spore density, viability, and purity of w-Ri inoculum are 5.25 times, 1.09 times, and 1.26 times higher, respectively, than those of s-Ri inoculum. (iii) The w-Ri inoculants demonstrate effects on enhancing rice biomass, root morphology, and photosynthesis that are consistent with those of the s-Ri inoculants, while requiring only 10% of the application rate of the s-Ri inoculants. These results provide crucial theoretical references for establishing a pure and efficient arbuscular mycorrhizal fungus propagation system and its promotion and application.IMPORTANCEThe development of a monolayer mesh hydroponic cultivation system for propagating Rhizophagus intraradices offers a significant advancement in overcoming the challenges of large-scale AMF inoculum production, which is critical for enhancing agricultural sustainability. The comparative analysis of water culture-based (w-Ri) and traditional soil-based (s-Ri) inoculum demonstrates the superior efficiency of the w-Ri system in terms of propagation speed, spore density, and inoculum quality, highlighting its potential for large-scale application in farming practices. The findings that w-Ri inoculants are equally effective in promoting plant growth while requiring only a fraction of the application rate of s-Ri inoculants underscore the potential for reducing both cost and environmental impact in agricultural inoculation practices.
期刊介绍:
Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.