{"title":"A Review of Methods and Challenges for Wind Measurement by Small Unmanned Aerial Vehicles","authors":"Mohammadamin Soltaninezhad, Roberto Monsorno, Stefano Tondini","doi":"10.1002/met.70065","DOIUrl":null,"url":null,"abstract":"<p>Unmanned aerial vehicles (UAVs) play a significant role in the aviation industry nowadays. Their portability and lower cost compared to traditional meteorological towers mean that their use is gaining momentum in many meteorological applications. In particular, UAV-based wind measurements are exploited in atmospheric energy balance research, precision agriculture, climate change studies, among others. This work aims to review the state-of-the-art of UAV-based wind measurement techniques by comparing the different working principles and highlighting their main challenges. The analyzed methodologies are divided into two categories: direct wind measurements (using anemometers mounted on UAVs) and indirect wind measurements (using velocity and force balances). Key aspects, such as the use of computational fluid dynamics (CFD) simulations, the most common sensor onboarding strategies, and the set-up of experimental tests in wind tunnels or in the field to validate the wind measurement accuracy, are addressed. Furthermore, novel developments based on machine learning and data filtration techniques for data quality enhancement are detailed. Based on a quantitative analysis of the recent relevant literature on this topic, we can conclude that multirotor UAVs are preferred to fixed-wing UAVs for scientific purposes, with the main challenge being the effect of propeller perturbation in the case of direct method wind measurements. Finally, it is shown that in most of the studies analyzed, sonic anemometers are chosen among all other types of sensors. Alternatively, the simplest version of the indirect method, namely the tilt model, is a common choice.</p>","PeriodicalId":49825,"journal":{"name":"Meteorological Applications","volume":"32 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/met.70065","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorological Applications","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/met.70065","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Unmanned aerial vehicles (UAVs) play a significant role in the aviation industry nowadays. Their portability and lower cost compared to traditional meteorological towers mean that their use is gaining momentum in many meteorological applications. In particular, UAV-based wind measurements are exploited in atmospheric energy balance research, precision agriculture, climate change studies, among others. This work aims to review the state-of-the-art of UAV-based wind measurement techniques by comparing the different working principles and highlighting their main challenges. The analyzed methodologies are divided into two categories: direct wind measurements (using anemometers mounted on UAVs) and indirect wind measurements (using velocity and force balances). Key aspects, such as the use of computational fluid dynamics (CFD) simulations, the most common sensor onboarding strategies, and the set-up of experimental tests in wind tunnels or in the field to validate the wind measurement accuracy, are addressed. Furthermore, novel developments based on machine learning and data filtration techniques for data quality enhancement are detailed. Based on a quantitative analysis of the recent relevant literature on this topic, we can conclude that multirotor UAVs are preferred to fixed-wing UAVs for scientific purposes, with the main challenge being the effect of propeller perturbation in the case of direct method wind measurements. Finally, it is shown that in most of the studies analyzed, sonic anemometers are chosen among all other types of sensors. Alternatively, the simplest version of the indirect method, namely the tilt model, is a common choice.
期刊介绍:
The aim of Meteorological Applications is to serve the needs of applied meteorologists, forecasters and users of meteorological services by publishing papers on all aspects of meteorological science, including:
applications of meteorological, climatological, analytical and forecasting data, and their socio-economic benefits;
forecasting, warning and service delivery techniques and methods;
weather hazards, their analysis and prediction;
performance, verification and value of numerical models and forecasting services;
practical applications of ocean and climate models;
education and training.