PIKFNNs-DPIM for Stochastic Response Analysis of Underwater Acoustic Propagation

IF 3.4 Q1 ENGINEERING, MECHANICAL
Shuainan Liu, Hanshu Chen, Qiang Xi, Zhuojia Fu
{"title":"PIKFNNs-DPIM for Stochastic Response Analysis of Underwater Acoustic Propagation","authors":"Shuainan Liu,&nbsp;Hanshu Chen,&nbsp;Qiang Xi,&nbsp;Zhuojia Fu","doi":"10.1002/msd2.70007","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a hybrid algorithm based on the physics-informed kernel function neural networks (PIKFNNs) and the direct probability integral method (DPIM) for calculating the probability density function of stochastic responses for structures in the deep marine environment. The underwater acoustic information is predicted utilizing the PIKFNNs, which integrate prior physical information. Subsequently, a novel uncertainty quantification analysis method, the DPIM, is introduced to establish a stochastic response analysis model of underwater acoustic propagation. The effects of random load, variable sound speed, fluctuating ocean density, and random material properties of shell on the underwater stochastic sound pressure are numerically analyzed, providing a probabilistic insight for assessing the mechanical behavior of structures in the deep marine environment.</p>","PeriodicalId":60486,"journal":{"name":"国际机械系统动力学学报(英文)","volume":"5 2","pages":"312-323"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.70007","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"国际机械系统动力学学报(英文)","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/msd2.70007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a hybrid algorithm based on the physics-informed kernel function neural networks (PIKFNNs) and the direct probability integral method (DPIM) for calculating the probability density function of stochastic responses for structures in the deep marine environment. The underwater acoustic information is predicted utilizing the PIKFNNs, which integrate prior physical information. Subsequently, a novel uncertainty quantification analysis method, the DPIM, is introduced to establish a stochastic response analysis model of underwater acoustic propagation. The effects of random load, variable sound speed, fluctuating ocean density, and random material properties of shell on the underwater stochastic sound pressure are numerically analyzed, providing a probabilistic insight for assessing the mechanical behavior of structures in the deep marine environment.

Abstract Image

基于PIKFNNs-DPIM的水声传播随机响应分析
提出了一种基于物理通知核函数神经网络(pikfnn)和直接概率积分法(DPIM)的混合算法,用于计算深海环境中结构随机响应的概率密度函数。利用融合了先验物理信息的pikfnn对水声信息进行预测。随后,引入一种新的不确定性量化分析方法DPIM,建立了水声传播的随机响应分析模型。数值分析了随机载荷、变声速、海洋密度波动和壳体随机材料特性对水下随机声压的影响,为评估深海环境中结构的力学行为提供了概率视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信