Back Cover Image, Volume 5, Number 2, June 2025

IF 3.4 Q1 ENGINEERING, MECHANICAL
{"title":"Back Cover Image, Volume 5, Number 2, June 2025","authors":"","doi":"10.1002/msd2.70037","DOIUrl":null,"url":null,"abstract":"<p><b>Back Cover Caption: Transfer learning in Physics-informed Neural Networks:</b> This study explores the generalization capabilities of physics-informed neural networks (PINNs) through transfer learning techniques applied to partial differential equation (PDE) problems. Traditional PINNs require retraining when problem conditions change, whereas this approach leverages full finetuning, lightweight finetuning, and low-rank adaptation (LoRA) to enhance efficiency across varying boundary conditions, materials, and geometries. Benchmark cases include the Taylor-Green Vortex, functionally graded elastic materials, and structural problems such as a square plate with a circular hole. The results demonstrate that full finetuning and LoRA significantly improve convergence and accuracy, highlighting their potential in developing more adaptable and efficient PINN-based solvers.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":60486,"journal":{"name":"国际机械系统动力学学报(英文)","volume":"5 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.70037","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"国际机械系统动力学学报(英文)","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/msd2.70037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Back Cover Caption: Transfer learning in Physics-informed Neural Networks: This study explores the generalization capabilities of physics-informed neural networks (PINNs) through transfer learning techniques applied to partial differential equation (PDE) problems. Traditional PINNs require retraining when problem conditions change, whereas this approach leverages full finetuning, lightweight finetuning, and low-rank adaptation (LoRA) to enhance efficiency across varying boundary conditions, materials, and geometries. Benchmark cases include the Taylor-Green Vortex, functionally graded elastic materials, and structural problems such as a square plate with a circular hole. The results demonstrate that full finetuning and LoRA significantly improve convergence and accuracy, highlighting their potential in developing more adaptable and efficient PINN-based solvers.

Abstract Image

封底图片,第五卷,第二期,2025年6月
后盖说明:物理信息神经网络中的迁移学习:本研究通过将迁移学习技术应用于偏微分方程(PDE)问题,探讨了物理信息神经网络(pinn)的泛化能力。当问题条件发生变化时,传统的pin需要重新训练,而这种方法利用全微调、轻量微调和低秩自适应(LoRA)来提高不同边界条件、材料和几何形状的效率。基准案例包括泰勒-格林涡旋、功能梯度弹性材料和结构问题,如带圆孔的方形板。结果表明,全微调和LoRA显著提高了收敛性和精度,突出了它们在开发更具适应性和效率的基于pnp的求解器方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信