Wenjia Wang, Owen J. Dziedzic, Claire R. Lesnjak, Zhuoqian Yu, James Miller, Xiaolei Shi, Jarryd R. Featherman, Scott A. Rankin and George W. Huber
{"title":"The kinetics of aqueous lactose hydrolysis with sulfuric acid†","authors":"Wenjia Wang, Owen J. Dziedzic, Claire R. Lesnjak, Zhuoqian Yu, James Miller, Xiaolei Shi, Jarryd R. Featherman, Scott A. Rankin and George W. Huber","doi":"10.1039/D5RE00175G","DOIUrl":null,"url":null,"abstract":"<p >Lactose-rich Greek yogurt acid whey (GAW) is a waste stream in the dairy industry that has caused severe environmental and economic challenges to the U.S. agricultural communities. Lactose is a sugar found in dairy products that has a low sweetness value and is often difficult to digest. Lactose can be hydrolyzed into glucose–galactose syrups (GGS). However, 5-hydroxymethylfurfural (HMF) is formed which must be removed for the GGS to be used as an alternative sustainable sweetener. In this study, we model lactose hydrolysis and include the first detailed kinetic investigation of HMF formation during sulfuric-acid-catalyzed lactose hydrolysis. We systematically examined the effects of temperature, lactose concentration, pH, and reaction time on the hydrolysis process, proposed 57 possible reaction networks, and developed a kinetic model accurately describing lactose hydrolysis and HMF formation, and calculated key kinetic parameters. Our model demonstrated strong alignment with experimental data and allowed us to simulate optimal conditions for maximizing GGS yield over 89% while minimizing HMF formation by 75–80%. This study provides valuable insights for optimizing reactor design and operational strategies, improving the economic viability and sustainability of GAW valorization.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 7","pages":" 1676-1691"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d5re00175g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lactose-rich Greek yogurt acid whey (GAW) is a waste stream in the dairy industry that has caused severe environmental and economic challenges to the U.S. agricultural communities. Lactose is a sugar found in dairy products that has a low sweetness value and is often difficult to digest. Lactose can be hydrolyzed into glucose–galactose syrups (GGS). However, 5-hydroxymethylfurfural (HMF) is formed which must be removed for the GGS to be used as an alternative sustainable sweetener. In this study, we model lactose hydrolysis and include the first detailed kinetic investigation of HMF formation during sulfuric-acid-catalyzed lactose hydrolysis. We systematically examined the effects of temperature, lactose concentration, pH, and reaction time on the hydrolysis process, proposed 57 possible reaction networks, and developed a kinetic model accurately describing lactose hydrolysis and HMF formation, and calculated key kinetic parameters. Our model demonstrated strong alignment with experimental data and allowed us to simulate optimal conditions for maximizing GGS yield over 89% while minimizing HMF formation by 75–80%. This study provides valuable insights for optimizing reactor design and operational strategies, improving the economic viability and sustainability of GAW valorization.
期刊介绍:
Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society.
From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.