Ag-doped Ni/SiO2 catalysts for the synthesis of aromatic amines from aromatic phenol†

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Kun Li, Baicheng Feng, Meng Guo, Rong Qu and Yan Jin
{"title":"Ag-doped Ni/SiO2 catalysts for the synthesis of aromatic amines from aromatic phenol†","authors":"Kun Li, Baicheng Feng, Meng Guo, Rong Qu and Yan Jin","doi":"10.1039/D5RE00055F","DOIUrl":null,"url":null,"abstract":"<p >Aromatic primary amines are chemical products and raw materials with a wide range of applications. However, synthesis of primary aromatic amines relies heavily on non-renewable petrochemicals as feedstock. We have prepared a catalyst for Ni/SiO<small><sub>2</sub></small> doped Ag, and a process has been instituted to prepare aromatic primary amines, which use renewable resources as raw materials through a fixed bed reactor under ambient pressure conditions. The catalyst and process were validated using phenol synthesis of aniline as a template reaction. The resultant surface phenol conversion is 99% and aniline selectivity is 98.5%, and the by-product of the reaction is water, which is in line with the principles of green chemistry. The broad applicability of the catalysts and synthesis process was further verified by the synthesis of aromatic primary amines using the corresponding aromatic phenols. The catalysts were characterized using TEM, SEM, BET, XPS and XRD techniques to fully analyze their morphology, microstructure and elemental composition. The adsorption model was constructed based on the characterization results, and the density functional theory (DFT) calculations confirmed that after doping Ag, phenol formed shorter chemical bonds at the active site of Ni–Ag bimetal through chemical adsorption, which indicated that it had stronger adsorption energy for phenol, and the amount of electron transfer from the active site of Ni–Ag bimetal to phenol was 2.9 fold higher than that before doping, which significantly promoted the activation of reactants.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 7","pages":" 1596-1605"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d5re00055f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aromatic primary amines are chemical products and raw materials with a wide range of applications. However, synthesis of primary aromatic amines relies heavily on non-renewable petrochemicals as feedstock. We have prepared a catalyst for Ni/SiO2 doped Ag, and a process has been instituted to prepare aromatic primary amines, which use renewable resources as raw materials through a fixed bed reactor under ambient pressure conditions. The catalyst and process were validated using phenol synthesis of aniline as a template reaction. The resultant surface phenol conversion is 99% and aniline selectivity is 98.5%, and the by-product of the reaction is water, which is in line with the principles of green chemistry. The broad applicability of the catalysts and synthesis process was further verified by the synthesis of aromatic primary amines using the corresponding aromatic phenols. The catalysts were characterized using TEM, SEM, BET, XPS and XRD techniques to fully analyze their morphology, microstructure and elemental composition. The adsorption model was constructed based on the characterization results, and the density functional theory (DFT) calculations confirmed that after doping Ag, phenol formed shorter chemical bonds at the active site of Ni–Ag bimetal through chemical adsorption, which indicated that it had stronger adsorption energy for phenol, and the amount of electron transfer from the active site of Ni–Ag bimetal to phenol was 2.9 fold higher than that before doping, which significantly promoted the activation of reactants.

Abstract Image

用掺银Ni/SiO2催化剂从芳香酚†合成芳香胺
芳香伯胺是一种用途广泛的化工产品和原料。然而,伯胺的合成严重依赖于不可再生的石化产品作为原料。制备了Ni/SiO2掺杂Ag的催化剂,并建立了以可再生资源为原料,在常压条件下通过固定床反应器制备芳族伯胺的工艺。以苯酚合成苯胺为模板反应,对催化剂和工艺进行了验证。所得表面苯酚转化率为99%,苯胺选择性为98.5%,反应副产物为水,符合绿色化学原理。用相应的芳香族酚合成芳香伯胺进一步验证了催化剂和合成工艺的广泛适用性。采用TEM、SEM、BET、XPS和XRD等技术对催化剂进行了表征,对催化剂的形貌、微观结构和元素组成进行了全面分析。基于表征结果构建了吸附模型,通过密度泛函理论(DFT)计算证实,掺入Ag后,苯酚通过化学吸附在Ni-Ag双金属的活性位点形成了更短的化学键,表明其对苯酚的吸附能更强,并且从Ni-Ag双金属的活性位点向苯酚的电子转移量比掺入前提高了2.9倍。这极大地促进了反应物的活化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信