{"title":"Cover Image, Volume 5, Number 2, June 2025","authors":"","doi":"10.1002/msd2.70036","DOIUrl":null,"url":null,"abstract":"<p><b>Front Cover Caption: Control of a lambda-robot based on machine learning surrogates for inverse kinematics and kinetics:</b> Tracking control of multibody systems with closed-loop mechanisms presents significant computational challenges due to the complexity of inverse kinematics and dynamics. This study introduces an innovative approach that replaces traditional model-based methods with artificial intelligence by training surrogate models on simulation data. Using the λ-robot, a parallel mechanism, as a case study, the workspace is analyzed to ensure comprehensive data coverage for training. The trained surrogates provide control inputs that enable the use of a linear quadratic regulator (LQR) for trajectory tracking. An additional feedback loop addresses model uncertainties. Simulation results validate the effectiveness of this AI-enhanced, data-driven control framework.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":60486,"journal":{"name":"国际机械系统动力学学报(英文)","volume":"5 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.70036","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"国际机械系统动力学学报(英文)","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/msd2.70036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Front Cover Caption: Control of a lambda-robot based on machine learning surrogates for inverse kinematics and kinetics: Tracking control of multibody systems with closed-loop mechanisms presents significant computational challenges due to the complexity of inverse kinematics and dynamics. This study introduces an innovative approach that replaces traditional model-based methods with artificial intelligence by training surrogate models on simulation data. Using the λ-robot, a parallel mechanism, as a case study, the workspace is analyzed to ensure comprehensive data coverage for training. The trained surrogates provide control inputs that enable the use of a linear quadratic regulator (LQR) for trajectory tracking. An additional feedback loop addresses model uncertainties. Simulation results validate the effectiveness of this AI-enhanced, data-driven control framework.