Process intensification of 2-amylanthraquinone hydrogenation in a micro-packed-bed reactor for H2O2 synthesis†

IF 3.1 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Junjie Wang, Lin Sheng, Qichen Shang, Jian Deng and Guangsheng Luo
{"title":"Process intensification of 2-amylanthraquinone hydrogenation in a micro-packed-bed reactor for H2O2 synthesis†","authors":"Junjie Wang, Lin Sheng, Qichen Shang, Jian Deng and Guangsheng Luo","doi":"10.1039/D5RE00079C","DOIUrl":null,"url":null,"abstract":"<p >In the synthesis of hydrogen peroxide, the hydrogenation reaction in the Riedl–Pfleiderer process faces operational risks and inefficiency challenges. This work pioneers the application of micro-packed-bed reactors (μPBRs) in 2-amylanthraquinone (AAQ) hydrogenation, establishing a transformative strategy for enhancing the Riedl–Pfleiderer process. By utilizing microscale effects, we achieved a record space–time yield of 336.8 g<small><sub>H<small><sub>2</sub></small>O<small><sub>2</sub></small></sub></small> g<small><sub>Pd</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small> — 25× and 21× higher than those of conventional slurry reactors and trickle-bed reactors, respectively. For the first time, AAQ demonstrated superior performance over 2-ethylanthraquinone (EAQ) in μPBRs, addressing the critical challenge of balancing hydrogenation efficiency (10.13 g L<small><sup>−1</sup></small>) with 99.9% effective anthraquinone retention, which could not be achieved in prior systems. Additionally, systematic optimization of solvent composition (3 : 1 TMB/TOP), reaction parameters (50 °C, 300 kPa), and catalyst utilization revealed μPBRs' intrinsic advantages: ultra-short apparent residence time (9 s), minimized over-hydrogenation risk, and exceptional stability (99.1% effective anthraquinone retention after 10 cycles). Furthermore, a validated mass transfer model (prediction error &lt;20%) was established for understanding the intrinsic mechanisms within gas–liquid–solid interactions, offering a predictive tool for reactor design. This study provides a safety-enhanced paradigm for H<small><sub>2</sub></small>O<small><sub>2</sub></small> synthesis, overcoming long-standing limitations in industrial process intensification.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 7","pages":" 1473-1486"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d5re00079c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the synthesis of hydrogen peroxide, the hydrogenation reaction in the Riedl–Pfleiderer process faces operational risks and inefficiency challenges. This work pioneers the application of micro-packed-bed reactors (μPBRs) in 2-amylanthraquinone (AAQ) hydrogenation, establishing a transformative strategy for enhancing the Riedl–Pfleiderer process. By utilizing microscale effects, we achieved a record space–time yield of 336.8 gH2O2 gPd−1 h−1 — 25× and 21× higher than those of conventional slurry reactors and trickle-bed reactors, respectively. For the first time, AAQ demonstrated superior performance over 2-ethylanthraquinone (EAQ) in μPBRs, addressing the critical challenge of balancing hydrogenation efficiency (10.13 g L−1) with 99.9% effective anthraquinone retention, which could not be achieved in prior systems. Additionally, systematic optimization of solvent composition (3 : 1 TMB/TOP), reaction parameters (50 °C, 300 kPa), and catalyst utilization revealed μPBRs' intrinsic advantages: ultra-short apparent residence time (9 s), minimized over-hydrogenation risk, and exceptional stability (99.1% effective anthraquinone retention after 10 cycles). Furthermore, a validated mass transfer model (prediction error <20%) was established for understanding the intrinsic mechanisms within gas–liquid–solid interactions, offering a predictive tool for reactor design. This study provides a safety-enhanced paradigm for H2O2 synthesis, overcoming long-standing limitations in industrial process intensification.

Abstract Image

微填充床反应器中2-蒽醌加氢合成H2O2的工艺强化研究
在双氧水合成过程中,Riedl-Pfleiderer工艺中的加氢反应面临着操作风险和低效率的挑战。这项工作开创了微填充床反应器(μPBRs)在2-蒽醌(AAQ)加氢中的应用,建立了一种改进Riedl-Pfleiderer工艺的变革策略。利用微尺度效应,我们获得了创纪录的时空产率336.8 gH2O2 gPd−1 h−1 -,分别比传统浆体反应器和滴床反应器高25倍和21倍。在μ pbr中,AAQ首次表现出优于2-乙基蒽醌(EAQ)的性能,解决了平衡氢化效率(10.13 g L−1)和99.9%有效蒽醌保留率的关键挑战,这在以前的体系中是无法实现的。此外,通过对溶剂组成(3∶1 TMB/TOP)、反应参数(50℃、300 kPa)和催化剂用量的系统优化,揭示了μ pbr的内在优势:超短的表观停留时间(9 s)、极低的过氢化风险、优异的稳定性(10个循环后有效保留蒽醌99.1%)。此外,建立了一个经过验证的传质模型(预测误差<;20%),用于理解气液固相互作用的内在机制,为反应器设计提供了预测工具。这项研究为H2O2合成提供了一个安全增强的范例,克服了工业过程强化长期存在的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信