Aminopropylimidazole and its zinc complex: CO2 chemistry and catalytic synthesis of cyclic carbonates†

IF 3.1 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Feda'a M. Al-Qaisi, Abdussalam K. Qaroush, Ahmad M. Ala'mar, Ala'a F. Eftaiha, Khaleel I. Assaf and Timo Repo
{"title":"Aminopropylimidazole and its zinc complex: CO2 chemistry and catalytic synthesis of cyclic carbonates†","authors":"Feda'a M. Al-Qaisi, Abdussalam K. Qaroush, Ahmad M. Ala'mar, Ala'a F. Eftaiha, Khaleel I. Assaf and Timo Repo","doi":"10.1039/D5RE00073D","DOIUrl":null,"url":null,"abstract":"<p >The biomimicry of carbonic anhydrase as the interaction between zinc and imidazole serves as an inspiration to engineer synthetic systems for CO<small><sub>2</sub></small> capture and utilization. In this research, we developed a zinc–aminopropylimidazole (Zn–api) complex to achieve CO<small><sub>2</sub></small> insertion and subsequently catalyze its cycloaddition reaction with a variety of epoxides. We investigated the complexation and carbamation reactions of both the unbound ligand and its zinc complex in aqueous and DMSO solutions. In D<small><sub>2</sub></small>O, unbound api reacts with CO<small><sub>2</sub></small> through a 1 : 2 mechanism, forming ammonium carbamate. However, in DMSO-<em>d</em><small><sub>6</sub></small>, the reaction follows a 1 : 1 pathway and leads to carbamic acid. Interestingly, the Zn–api complex captures CO<small><sub>2</sub></small> differently depending on the solvent, forming an uncharged species (–NHCO<small><sub>2</sub></small>–Zn) in water and a zwitterionic carbamate (–NH<small><sub>2</sub></small><small><sup>+</sup></small>Br<small><sup>−</sup></small>–CO<small><sub>2</sub></small>–Zn–Im) in DMSO. To our knowledge, a first time zwitterionic carbamate coordination mode <em>via</em> CO<small><sub>2</sub></small> insertion is verified by <em>in situ</em> ATR-FTIR with a peak centered at 1704 cm<small><sup>−1</sup></small> and further supported by quantum chemical calculations. The latter complex exhibits excellent catalytic performance for cyclic carbonates synthesis, achieving 94% and 96% conversion for epichlorohydrin carbonate and glycidol carbonate, respectively, under ambient reaction conditions using a CO<small><sub>2</sub></small> balloon. Notably, it demonstrates remarkable stability over five consecutive catalytic cycles for the coupling of epichlorohydrin and CO<small><sub>2</sub></small> without a discernible decrease in activity.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 7","pages":" 1461-1472"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d5re00073d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The biomimicry of carbonic anhydrase as the interaction between zinc and imidazole serves as an inspiration to engineer synthetic systems for CO2 capture and utilization. In this research, we developed a zinc–aminopropylimidazole (Zn–api) complex to achieve CO2 insertion and subsequently catalyze its cycloaddition reaction with a variety of epoxides. We investigated the complexation and carbamation reactions of both the unbound ligand and its zinc complex in aqueous and DMSO solutions. In D2O, unbound api reacts with CO2 through a 1 : 2 mechanism, forming ammonium carbamate. However, in DMSO-d6, the reaction follows a 1 : 1 pathway and leads to carbamic acid. Interestingly, the Zn–api complex captures CO2 differently depending on the solvent, forming an uncharged species (–NHCO2–Zn) in water and a zwitterionic carbamate (–NH2+Br–CO2–Zn–Im) in DMSO. To our knowledge, a first time zwitterionic carbamate coordination mode via CO2 insertion is verified by in situ ATR-FTIR with a peak centered at 1704 cm−1 and further supported by quantum chemical calculations. The latter complex exhibits excellent catalytic performance for cyclic carbonates synthesis, achieving 94% and 96% conversion for epichlorohydrin carbonate and glycidol carbonate, respectively, under ambient reaction conditions using a CO2 balloon. Notably, it demonstrates remarkable stability over five consecutive catalytic cycles for the coupling of epichlorohydrin and CO2 without a discernible decrease in activity.

Abstract Image

氨基丙基咪唑及其锌配合物:CO2化学和催化合成环状碳酸盐†
碳酸酐酶作为锌和咪唑相互作用的仿生学为设计二氧化碳捕获和利用的合成系统提供了灵感。在本研究中,我们开发了一种锌-氨基丙基咪唑(Zn-api)配合物,以实现CO2插入并随后催化其与多种环氧化物的环加成反应。我们研究了未结合的配体及其锌配合物在水溶液和DMSO溶液中的络合和碳化反应。在D2O中,未结合的api与CO2以1:2的反应机制反应,生成氨基甲酸铵。然而,在DMSO-d6中,反应遵循1:1的途径并导致氨基甲酸。有趣的是,根据溶剂的不同,Zn-api配合物捕获CO2的方式也不同,在水中形成不带电的物质(-NHCO2-Zn),在DMSO中形成两性离子氨基甲酸酯(-NH2 +Br−-CO2-Zn-Im)。据我们所知,首次通过原位ATR-FTIR验证了通过CO2插入的两性离子氨基甲酸酯配位模式,其峰中心为1704 cm−1,并进一步得到量子化学计算的支持。后一种配合物在环碳酸盐合成中表现出优异的催化性能,在CO2球囊环境反应条件下,碳酸环氧氯丙烷和碳酸甘油的转化率分别达到94%和96%。值得注意的是,它在连续五个催化循环中对环氧氯丙烷和二氧化碳的偶联表现出显著的稳定性,而活性没有明显的下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信