Attention U-Mamba: A Simple and Efficient Method for Landslide Segmentation

Yushuang Fu;Hao Zhong;Chengyong Fang
{"title":"Attention U-Mamba: A Simple and Efficient Method for Landslide Segmentation","authors":"Yushuang Fu;Hao Zhong;Chengyong Fang","doi":"10.1109/LGRS.2025.3580565","DOIUrl":null,"url":null,"abstract":"Landslides cause significant casualties and property damage worldwide. Integrating optical remote sensing with deep learning is crucial for effective landslide segmentation. This study introduces attention U-Mamba (AUM), a novel approach combining state-space models (SSMs) with a U-shaped network. AUM leverages CNNs for local feature extraction and Mamba for global context, benefiting from Mamba’s linear complexity to reduce parameters while enhancing performance. Evaluated on a public landslide dataset against seven state-of-the-art methods, the AUM achieves state-of-the-art performance with only 15.89 M parameters—60% fewer than DeepLabV3 (39.63 M)—while attaining an <inline-formula> <tex-math>$F1$ </tex-math></inline-formula> score of 87.81%, mIOU of 79.82%, and precision of 84.84%, demonstrating superior efficiency and accuracy.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11037820/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Landslides cause significant casualties and property damage worldwide. Integrating optical remote sensing with deep learning is crucial for effective landslide segmentation. This study introduces attention U-Mamba (AUM), a novel approach combining state-space models (SSMs) with a U-shaped network. AUM leverages CNNs for local feature extraction and Mamba for global context, benefiting from Mamba’s linear complexity to reduce parameters while enhancing performance. Evaluated on a public landslide dataset against seven state-of-the-art methods, the AUM achieves state-of-the-art performance with only 15.89 M parameters—60% fewer than DeepLabV3 (39.63 M)—while attaining an $F1$ score of 87.81%, mIOU of 79.82%, and precision of 84.84%, demonstrating superior efficiency and accuracy.
U-Mamba:一种简单有效的滑坡分割方法
山体滑坡在世界范围内造成重大人员伤亡和财产损失。将光学遥感与深度学习相结合是实现滑坡有效分割的关键。本文介绍了一种将状态空间模型(ssm)与u型网络相结合的新方法——注意力u -曼巴(AUM)。AUM利用cnn进行局部特征提取,Mamba用于全局上下文,受益于Mamba的线性复杂性来减少参数,同时提高性能。在公开的滑坡数据集上对7种最先进的方法进行了评估,AUM仅使用15.89 M个参数(比DeepLabV3 (39.63 M)少60%)实现了最先进的性能,同时获得了87.81%的$F1$分数,79.82%的mIOU和84.84%的精度,显示出卓越的效率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信