Can “consciousness” be observed from large language model (LLM) internal states? Dissecting LLM representations obtained from Theory of Mind test with Integrated Information Theory and Span Representation analysis

Jingkai Li
{"title":"Can “consciousness” be observed from large language model (LLM) internal states? Dissecting LLM representations obtained from Theory of Mind test with Integrated Information Theory and Span Representation analysis","authors":"Jingkai Li","doi":"10.1016/j.nlp.2025.100163","DOIUrl":null,"url":null,"abstract":"<div><div>Integrated Information Theory (IIT) provides a quantitative framework for explaining consciousness phenomenon, positing that conscious systems comprise elements integrated through causal properties. We apply IIT 3.0 and 4.0 — the latest iterations of this framework — to sequences of Large Language Model (LLM) representations, analyzing data derived from existing Theory of Mind (ToM) test results. Our study systematically investigates whether the differences of ToM test performances, when presented in the LLM representations, can be revealed by IIT estimates, i.e., <span><math><msup><mrow><mi>Φ</mi></mrow><mrow><mo>max</mo></mrow></msup></math></span> (IIT 3.0), <span><math><mi>Φ</mi></math></span> (IIT 4.0), Conceptual Information (IIT 3.0), and <span><math><mi>Φ</mi></math></span>-structure (IIT 4.0). Furthermore, we compare these metrics with the Span Representations independent of any estimate for consciousness. This additional effort aims to differentiate between potential “consciousness” phenomena and inherent separations within LLM representational space. We conduct comprehensive experiments examining variations across LLM transformer layers and linguistic spans from stimuli. Our results suggest that sequences of contemporary Transformer-based LLM representations lack statistically significant indicators of observed “consciousness” phenomena but exhibit intriguing patterns under <em>spatio</em>-permutational analyses.</div></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"12 ","pages":"Article 100163"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719125000391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Integrated Information Theory (IIT) provides a quantitative framework for explaining consciousness phenomenon, positing that conscious systems comprise elements integrated through causal properties. We apply IIT 3.0 and 4.0 — the latest iterations of this framework — to sequences of Large Language Model (LLM) representations, analyzing data derived from existing Theory of Mind (ToM) test results. Our study systematically investigates whether the differences of ToM test performances, when presented in the LLM representations, can be revealed by IIT estimates, i.e., Φmax (IIT 3.0), Φ (IIT 4.0), Conceptual Information (IIT 3.0), and Φ-structure (IIT 4.0). Furthermore, we compare these metrics with the Span Representations independent of any estimate for consciousness. This additional effort aims to differentiate between potential “consciousness” phenomena and inherent separations within LLM representational space. We conduct comprehensive experiments examining variations across LLM transformer layers and linguistic spans from stimuli. Our results suggest that sequences of contemporary Transformer-based LLM representations lack statistically significant indicators of observed “consciousness” phenomena but exhibit intriguing patterns under spatio-permutational analyses.

Abstract Image

“意识”可以从大型语言模型(LLM)内部状态观察到吗?运用综合信息理论和广度表征分析方法对心理理论测试的法学硕士表征进行剖析
集成信息理论(IIT)为解释意识现象提供了一个定量框架,假设意识系统由通过因果属性集成的元素组成。我们将IIT 3.0和4.0(该框架的最新迭代)应用于大型语言模型(LLM)表示序列,分析来自现有心智理论(ToM)测试结果的数据。我们的研究系统地调查了在LLM表示中呈现的ToM测试性能的差异是否可以通过IIT估计显示,即Φmax (IIT 3.0), Φ (IIT 4.0), Conceptual Information (IIT 3.0)和Φ-structure (IIT 4.0)。此外,我们将这些指标与独立于任何意识估计的Span表征进行比较。这种额外的努力旨在区分潜在的“意识”现象和LLM表征空间中的固有分离。我们进行了全面的实验,检查了LLM变压器层之间的变化和刺激物的语言跨度。我们的研究结果表明,当代基于《变形金刚》的LLM表示序列缺乏观察到的“意识”现象的统计显著指标,但在空间排列分析中表现出有趣的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信