{"title":"Innovative strategies for modeling peptide–protein interactions and rational peptide drug design","authors":"Lara Scharbert , Birgit Strodel","doi":"10.1016/j.sbi.2025.103083","DOIUrl":null,"url":null,"abstract":"<div><div>This review highlights cutting-edge techniques for modeling peptide–protein interactions and advancing computer-aided peptide–drug design. We examine significant progress in generating peptide poses through docking and artificial intelligence (AI), assessing peptide flexibility via enhanced molecular dynamics simulations, and analyzing binding interactions through free energy calculations. Additionally, we discuss how these insights can inform the rational design of therapeutic peptides by utilizing free energy metrics and strategic modifications to enhance their binding affinity and therapeutic potential. Looking forward, further integrating AI will be crucial for optimizing peptide design and enhancing drug development efforts.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"93 ","pages":"Article 103083"},"PeriodicalIF":6.1000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25001010","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This review highlights cutting-edge techniques for modeling peptide–protein interactions and advancing computer-aided peptide–drug design. We examine significant progress in generating peptide poses through docking and artificial intelligence (AI), assessing peptide flexibility via enhanced molecular dynamics simulations, and analyzing binding interactions through free energy calculations. Additionally, we discuss how these insights can inform the rational design of therapeutic peptides by utilizing free energy metrics and strategic modifications to enhance their binding affinity and therapeutic potential. Looking forward, further integrating AI will be crucial for optimizing peptide design and enhancing drug development efforts.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation