Holistic insight mechanism of nano-based phase change for thermal storage applications

Azad Qayoom Malik , Tabinda Jabeen , Iqra Jabeen , Nabisab Mujawar Mubarak , Ahmad Hosseini-Bandegharaei , Amika , Anum Najeeb , Rahat Nawaz , Faisal Abnisa
{"title":"Holistic insight mechanism of nano-based phase change for thermal storage applications","authors":"Azad Qayoom Malik ,&nbsp;Tabinda Jabeen ,&nbsp;Iqra Jabeen ,&nbsp;Nabisab Mujawar Mubarak ,&nbsp;Ahmad Hosseini-Bandegharaei ,&nbsp;Amika ,&nbsp;Anum Najeeb ,&nbsp;Rahat Nawaz ,&nbsp;Faisal Abnisa","doi":"10.1016/j.rsurfi.2025.100579","DOIUrl":null,"url":null,"abstract":"<div><div>Nano-enhanced phase change materials (NEPCMs) have attracted much interest in thermal energy storage systems due to their higher stability, energy density, and heat transport. This study comprehensively explains the mechanisms underlying nano-based phase change enhancements. To improve the thermal conductivity of PCMs, Nanoparticles are embedded into the PCM matrix through various methods. The heat transfer resistance of PCMs during charging and discharging cycles has been improved by introducing nanoparticles in the PCM matrix. Key performance parameters, including thermal conductivity (enhanced from ∼0.2 W/m·K to &gt;1.8 W/m·K), latent heat storage (reduction/increase of ±15–25 % depending on nanoparticle type and dispersion), supercooling suppression (up to 50 % improvement), and melting/freezing temperature shifts (±2–5 °C), are critically discussed. The impact of nanoparticle size (10–100 nm), concentration (0.1–10 wt %), aspect ratio, and surface functionalization is reviewed in the context of thermal reliability and stability over 100–1000 thermal cycles. Furthermore, encapsulation techniques, interfacial polymerization, and sol-gel are assessed for their contributions to mechanical reinforcement and leak prevention. The obstacles, such as nanoparticle aggregation and cost-efficiency trade-offs, are identified in this review, along with new research avenues like scalable synthesis techniques and optimizated PCM. This review discusses the latest advancements in developing nanotechnology-based PCM and their possible use in thermal energy storage.</div></div>","PeriodicalId":21085,"journal":{"name":"Results in Surfaces and Interfaces","volume":"20 ","pages":"Article 100579"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Surfaces and Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666845925001667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nano-enhanced phase change materials (NEPCMs) have attracted much interest in thermal energy storage systems due to their higher stability, energy density, and heat transport. This study comprehensively explains the mechanisms underlying nano-based phase change enhancements. To improve the thermal conductivity of PCMs, Nanoparticles are embedded into the PCM matrix through various methods. The heat transfer resistance of PCMs during charging and discharging cycles has been improved by introducing nanoparticles in the PCM matrix. Key performance parameters, including thermal conductivity (enhanced from ∼0.2 W/m·K to >1.8 W/m·K), latent heat storage (reduction/increase of ±15–25 % depending on nanoparticle type and dispersion), supercooling suppression (up to 50 % improvement), and melting/freezing temperature shifts (±2–5 °C), are critically discussed. The impact of nanoparticle size (10–100 nm), concentration (0.1–10 wt %), aspect ratio, and surface functionalization is reviewed in the context of thermal reliability and stability over 100–1000 thermal cycles. Furthermore, encapsulation techniques, interfacial polymerization, and sol-gel are assessed for their contributions to mechanical reinforcement and leak prevention. The obstacles, such as nanoparticle aggregation and cost-efficiency trade-offs, are identified in this review, along with new research avenues like scalable synthesis techniques and optimizated PCM. This review discusses the latest advancements in developing nanotechnology-based PCM and their possible use in thermal energy storage.
纳米相变储热应用的整体机制
纳米增强相变材料(NEPCMs)由于其更高的稳定性、能量密度和热传输能力而引起了热储能系统的广泛关注。本研究全面解释了纳米相变增强的机制。为了提高PCM的导热性,纳米颗粒通过各种方法嵌入到PCM基质中。通过在PCM基体中引入纳米颗粒,提高了PCM在充放电循环中的传热阻力。关键性能参数,包括导热系数(从~ 0.2 W/m·K增强到+ gt;1.8 W/m·K),潜热储存(根据纳米颗粒类型和分散减少/增加±15 - 25%),过冷抑制(提高高达50%),以及熔化/冻结温度变化(±2-5°C),进行了严格的讨论。纳米颗粒尺寸(10-100 nm)、浓度(0.1-10 wt %)、宽高比和表面功能化的影响在100-1000热循环的热可靠性和稳定性的背景下进行了综述。此外,包封技术、界面聚合和溶胶-凝胶对机械加固和防泄漏的贡献进行了评估。这篇综述指出了纳米颗粒聚集和成本效益权衡等障碍,以及可扩展合成技术和优化PCM等新的研究途径。本文综述了基于纳米技术的相变材料的最新研究进展及其在热能储存方面的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信