Predicting IPO first-day returns: Evidence from machine learning analyses*

IF 3.6 2区 经济学 Q1 BUSINESS, FINANCE
Gonul Colak , Mengchuan Fu , Iftekhar Hasan
{"title":"Predicting IPO first-day returns: Evidence from machine learning analyses*","authors":"Gonul Colak ,&nbsp;Mengchuan Fu ,&nbsp;Iftekhar Hasan","doi":"10.1016/j.jbankfin.2025.107500","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting IPO first-day returns is inherently challenging due to the wide range of contributing factors, each with distinct statistical properties. We assess the performance of several machine learning (ML) techniques and identify XGBoost as the most statistically effective model for forecasting first-day returns. Using a comprehensive set of 863 pre-IPO variables, our high-performing predictive model accurately estimates both the direction and magnitude of IPO first-day returns. The most influential predictors include underwriter agency measures, price revision, and the free-float fraction. Using a rolling-window predictive approach, the model demonstrates substantial practical value, generating approximately $300 billion in gains from IPOs with positive first-day returns and avoiding more than $22 billion in losses from those with negative returns over the 2000–2016 period.</div></div>","PeriodicalId":48460,"journal":{"name":"Journal of Banking & Finance","volume":"178 ","pages":"Article 107500"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Banking & Finance","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378426625001207","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting IPO first-day returns is inherently challenging due to the wide range of contributing factors, each with distinct statistical properties. We assess the performance of several machine learning (ML) techniques and identify XGBoost as the most statistically effective model for forecasting first-day returns. Using a comprehensive set of 863 pre-IPO variables, our high-performing predictive model accurately estimates both the direction and magnitude of IPO first-day returns. The most influential predictors include underwriter agency measures, price revision, and the free-float fraction. Using a rolling-window predictive approach, the model demonstrates substantial practical value, generating approximately $300 billion in gains from IPOs with positive first-day returns and avoiding more than $22 billion in losses from those with negative returns over the 2000–2016 period.
预测IPO首日收益:来自机器学习分析的证据*
由于影响IPO首日回报率的因素很多,而且每个因素都有不同的统计特性,因此预测IPO首日回报率本身就具有挑战性。我们评估了几种机器学习(ML)技术的性能,并确定XGBoost是预测首日收益的最有效的统计模型。利用863个IPO前变量,我们的高性能预测模型准确地估计了IPO首日收益的方向和幅度。最具影响力的预测因素包括承销商机构措施、价格修正和自由流通股比例。使用滚动窗口预测方法,该模型显示了巨大的实用价值,在2000年至2016年期间,从首日收益为正的ipo中产生了约3000亿美元的收益,并避免了超过220亿美元的负收益损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
5.40%
发文量
262
期刊介绍: The Journal of Banking and Finance (JBF) publishes theoretical and empirical research papers spanning all the major research fields in finance and banking. The aim of the Journal of Banking and Finance is to provide an outlet for the increasing flow of scholarly research concerning financial institutions and the money and capital markets within which they function. The Journal''s emphasis is on theoretical developments and their implementation, empirical, applied, and policy-oriented research in banking and other domestic and international financial institutions and markets. The Journal''s purpose is to improve communications between, and within, the academic and other research communities and policymakers and operational decision makers at financial institutions - private and public, national and international, and their regulators. The Journal is one of the largest Finance journals, with approximately 1500 new submissions per year, mainly in the following areas: Asset Management; Asset Pricing; Banking (Efficiency, Regulation, Risk Management, Solvency); Behavioural Finance; Capital Structure; Corporate Finance; Corporate Governance; Derivative Pricing and Hedging; Distribution Forecasting with Financial Applications; Entrepreneurial Finance; Empirical Finance; Financial Economics; Financial Markets (Alternative, Bonds, Currency, Commodity, Derivatives, Equity, Energy, Real Estate); FinTech; Fund Management; General Equilibrium Models; High-Frequency Trading; Intermediation; International Finance; Hedge Funds; Investments; Liquidity; Market Efficiency; Market Microstructure; Mergers and Acquisitions; Networks; Performance Analysis; Political Risk; Portfolio Optimization; Regulation of Financial Markets and Institutions; Risk Management and Analysis; Systemic Risk; Term Structure Models; Venture Capital.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信