MHS-Net: A multi-scale heterogeneous synergistic network for single image deraining

IF 4.5 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2025-06-16 DOI:10.1016/j.array.2025.100423
Lingfeng Yuan, Minghong Xie
{"title":"MHS-Net: A multi-scale heterogeneous synergistic network for single image deraining","authors":"Lingfeng Yuan,&nbsp;Minghong Xie","doi":"10.1016/j.array.2025.100423","DOIUrl":null,"url":null,"abstract":"<div><div>Single-image rain removal plays a crucial role in improving downstream visual tasks under adverse weather conditions. However, existing methods often fail to effectively balance global–local feature interactions and adaptive feature fusion in complex rain-streak scenarios. To address these challenges, we propose a Multi-scale Heterogeneous Fusion Network (MHF-Net) that integrates three core innovations for enhanced rain removal. The first innovation is the Heterogeneous Synergistic Enhancement (HSE) module, which combines Vision Mamba and convolutional branches to jointly model long-range dependencies and restore fine-grained textures. The second is the Dynamic Perception Adaptive Fusion (DPAF) strategy, which utilizes learnable masks to spatially separate features, reducing fusion artifacts and improving color consistency. Lastly, the Hierarchical Multi-scale Integration Mechanism (HMIM) refines cross-scale features using a pyramid encoder–decoder architecture. On the Rain100L dataset, our approach achieves a notable PSNR improvement of 0.42 dB and elevates SSIM to 0.991, surpassing the state-of-the-art methods. For the more challenging Rain100H dataset, all evaluation metrics show consistent improvements. Visual and residual analyses confirm superior rain removal and detail preservation, while downstream applications, such as semantic segmentation, further demonstrate the practical benefits of the proposed method. Ablation studies validate the contribution of each module in enhancing the overall performance.</div></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"27 ","pages":"Article 100423"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005625000505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Single-image rain removal plays a crucial role in improving downstream visual tasks under adverse weather conditions. However, existing methods often fail to effectively balance global–local feature interactions and adaptive feature fusion in complex rain-streak scenarios. To address these challenges, we propose a Multi-scale Heterogeneous Fusion Network (MHF-Net) that integrates three core innovations for enhanced rain removal. The first innovation is the Heterogeneous Synergistic Enhancement (HSE) module, which combines Vision Mamba and convolutional branches to jointly model long-range dependencies and restore fine-grained textures. The second is the Dynamic Perception Adaptive Fusion (DPAF) strategy, which utilizes learnable masks to spatially separate features, reducing fusion artifacts and improving color consistency. Lastly, the Hierarchical Multi-scale Integration Mechanism (HMIM) refines cross-scale features using a pyramid encoder–decoder architecture. On the Rain100L dataset, our approach achieves a notable PSNR improvement of 0.42 dB and elevates SSIM to 0.991, surpassing the state-of-the-art methods. For the more challenging Rain100H dataset, all evaluation metrics show consistent improvements. Visual and residual analyses confirm superior rain removal and detail preservation, while downstream applications, such as semantic segmentation, further demonstrate the practical benefits of the proposed method. Ablation studies validate the contribution of each module in enhancing the overall performance.
MHS-Net:一种用于单幅图像脱除的多尺度异构协同网络
在恶劣天气条件下,单幅图像去雨在改善下游视觉任务中起着至关重要的作用。然而,现有的方法往往不能有效地平衡复杂雨纹场景下的全局-局部特征交互和自适应特征融合。为了应对这些挑战,我们提出了一个多尺度异构融合网络(MHF-Net),该网络集成了三个核心创新,以增强除雨能力。第一个创新是异构协同增强(HSE)模块,该模块结合了Vision Mamba和卷积分支,共同建模远程依赖关系并恢复细粒度纹理。二是动态感知自适应融合(DPAF)策略,该策略利用可学习蒙版对空间特征进行分离,减少融合伪影,提高颜色一致性。最后,分层多尺度集成机制(HMIM)使用金字塔式编码器-解码器架构来细化跨尺度特征。在Rain100L数据集上,我们的方法实现了0.42 dB的显着PSNR改进,并将SSIM提升到0.991,超过了最先进的方法。对于更具挑战性的Rain100H数据集,所有评估指标都显示出一致的改进。视觉分析和残差分析证实了该方法在去除雨水和保留细节方面的优势,而语义分割等下游应用进一步证明了该方法的实际优势。烧蚀研究验证了每个模块在提高整体性能方面的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信