Yang Yang , Fanying Meng , Wei Liu , Jingxin Li , Jing Zhang , Jiyu Fan , Chunlan Ma , Min Ge , Li Pi , Zhe Qu , Lei Zhang
{"title":"Electron spin resonance study of the van der Waals ferromagnet Fe5GeTe2","authors":"Yang Yang , Fanying Meng , Wei Liu , Jingxin Li , Jing Zhang , Jiyu Fan , Chunlan Ma , Min Ge , Li Pi , Zhe Qu , Lei Zhang","doi":"10.1016/j.jmmm.2025.173251","DOIUrl":null,"url":null,"abstract":"<div><div>The van der Waals (vdW) material Fe<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>GeTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> is a promising candidate for spintronic applications due to its high Curie temperature (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span>) and easily controllable properties. In this study, we thoroughly investigate the magnetic anisotropy of Fe<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>GeTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> single crystals using magnetization and electron spin resonance (ESR) techniques. We find that the magnetization for <span><math><mrow><mi>H</mi><mo>/</mo><mo>/</mo><mi>a</mi><mi>b</mi></mrow></math></span> is stronger than that for <span><math><mrow><mi>H</mi><mo>/</mo><mo>/</mo><mi>c</mi></mrow></math></span> below <span><math><mrow><msup><mrow><mi>T</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>∼</mo></mrow></math></span>100 K, exhibiting a weak easy-plane anisotropy (EPA). This EPA is significantly enhanced in the temperature range of <span><math><mrow><msup><mrow><mi>T</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo><</mo><mi>T</mi><mo><</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msub></mrow></math></span>, indicating an enhanced EPA effect. Meanwhile, the ESR spectra show weak intensity below <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> while significantly anisotropic signals are observed in the enhanced EPA region, with stronger ESR intensity for <span><math><mrow><mi>H</mi><mo>/</mo><mo>/</mo><mi>a</mi><mi>b</mi></mrow></math></span> compared to that for <span><math><mrow><mi>H</mi><mo>/</mo><mo>/</mo><mi>c</mi></mrow></math></span>. The resonance fields (<span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>) for <span><math><mrow><mi>H</mi><mo>/</mo><mo>/</mo><mi>a</mi><mi>b</mi></mrow></math></span> and <span><math><mrow><mi>H</mi><mo>/</mo><mo>/</mo><mi>c</mi></mrow></math></span> display opposite trends. The resonance field <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow><mrow><mi>a</mi><mi>b</mi></mrow></msubsup></math></span> for <span><math><mrow><mi>H</mi><mo>/</mo><mo>/</mo><mi>a</mi><mi>b</mi></mrow></math></span> shifts toward lower fields, while <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow><mrow><mi>c</mi></mrow></msubsup></math></span> for <span><math><mrow><mi>H</mi><mo>/</mo><mo>/</mo><mi>c</mi></mrow></math></span> moves toward higher fields upon cooling. This contrary trends of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> for <span><math><mrow><mi>H</mi><mo>/</mo><mo>/</mo><mi>a</mi><mi>b</mi></mrow></math></span> and <span><math><mrow><mi>H</mi><mo>/</mo><mo>/</mo><mi>c</mi></mrow></math></span> are attributed to the effects of magnetocrystalline anisotropy and shape anisotropy, which are consistent with observations in two-dimensional ferromagnetic materials with EPA. These findings enhance our understanding of the magnetic correlations and spin dynamics in this system.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"629 ","pages":"Article 173251"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetism and Magnetic Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304885325004834","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The van der Waals (vdW) material FeGeTe is a promising candidate for spintronic applications due to its high Curie temperature () and easily controllable properties. In this study, we thoroughly investigate the magnetic anisotropy of FeGeTe single crystals using magnetization and electron spin resonance (ESR) techniques. We find that the magnetization for is stronger than that for below 100 K, exhibiting a weak easy-plane anisotropy (EPA). This EPA is significantly enhanced in the temperature range of , indicating an enhanced EPA effect. Meanwhile, the ESR spectra show weak intensity below while significantly anisotropic signals are observed in the enhanced EPA region, with stronger ESR intensity for compared to that for . The resonance fields () for and display opposite trends. The resonance field for shifts toward lower fields, while for moves toward higher fields upon cooling. This contrary trends of for and are attributed to the effects of magnetocrystalline anisotropy and shape anisotropy, which are consistent with observations in two-dimensional ferromagnetic materials with EPA. These findings enhance our understanding of the magnetic correlations and spin dynamics in this system.
期刊介绍:
The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcome, including Critical Focused issues, Current Perspectives and Outreach to the General Public.
Main Categories:
Full-length articles:
Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged.
In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications.
The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications.
The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechanical Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism.
Review articles:
Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.