Performance of machine learning algorithms to evaluate the physico-mechanical properties of nanoparticle panels

Derrick Mirindi , James Hunter , David Sinkhonde , Tajebe Bezabih , Frederic Mirindi
{"title":"Performance of machine learning algorithms to evaluate the physico-mechanical properties of nanoparticle panels","authors":"Derrick Mirindi ,&nbsp;James Hunter ,&nbsp;David Sinkhonde ,&nbsp;Tajebe Bezabih ,&nbsp;Frederic Mirindi","doi":"10.1016/j.grets.2025.100235","DOIUrl":null,"url":null,"abstract":"<div><div>Nanoparticles significantly enhance the properties of wood-based materials, especially particleboards and wood panels. This review analyzes secondary data on nanoparticle integration in board production, aiming to evaluate the relationships among physical (water absorption (WA) and thickness swelling (TS)) and mechanical (modulus of rupture (MOR), modulus of elasticity (MOE); and internal bond (IB) strength) properties and to predict performance using machine learning (ML) algorithms. These algorithms include Pearson correlation, hierarchical clustering, and decision tree (DT) models. Results indicate that nanoparticles such as graphene oxide (GO), reduced graphene oxide (rGO), hydrolysis lignin, and calcium carbonate improve mechanical properties, with MOR values of 27.38–52.65 MPa and MOE of 2591.6–4680 MPa, meeting EN312 load-bearing standards. Zinc oxide nanoparticles yield superior dimensional stability by achieving a low TS of 9.33%. However, according to the American National Standard for Particleboard (ANSI/A208.1-1999), most nanoparticle boards produced met general-purpose standards except for WA and TS, which exceeded the maximum limits of 8% and 3%, respectively. Only crosslinked chitosan and zinc oxide nanoparticle panels meet the minimum requirements for TS (17%) and the maximum MOR (11.00 MPa) and MOE (1,800.00 MPa) for general purposes in dry conditions (furniture and interior fitments) according to the Brazilian standard (ABNT NBR). The Pearson correlation analysis reveals a strong relationship between board properties (R = 0.94 for WA–TS; R = 0.93 for MOR–MOE), confirming that nanoparticle treatments enhance performance while maintaining inherent material behavior. Hierarchical clustering grouped nanoparticles by performance: zinc oxide and chitosan+UF+epoxy formed a cluster with the lowest WA and TS, indicating optimal dimensional stability, while GO, rGO, and chitosan-based composites clustered with moderate values. For mechanical properties, APTES-modified nanocellulose, aluminum oxide, and zinc oxide formed a high-performance cluster (high MOR, MOE, IB). DT algorithms demonstrated high predictive accuracy (R<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>92</mn></mrow></math></span> for WA-TS, 0.96 for MOR-MOE, and 0.80 for IB-MOE), identifying critical thresholds: WA below 29.73% corresponded to minimal TS (9.94%), MOR above 38.18 MPa led to MOE above 3598.86 MPa, and IB above 0.88 MPa corresponds to MOE greater than 2,747.99 MPa. This data-driven framework enables targeted nanoparticle selection to fabricate engineered wood products and can be included in industry quality control standards to advance sustainable material development through ML-guided optimization.</div></div>","PeriodicalId":100598,"journal":{"name":"Green Technologies and Sustainability","volume":"3 4","pages":"Article 100235"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Technologies and Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949736125000697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoparticles significantly enhance the properties of wood-based materials, especially particleboards and wood panels. This review analyzes secondary data on nanoparticle integration in board production, aiming to evaluate the relationships among physical (water absorption (WA) and thickness swelling (TS)) and mechanical (modulus of rupture (MOR), modulus of elasticity (MOE); and internal bond (IB) strength) properties and to predict performance using machine learning (ML) algorithms. These algorithms include Pearson correlation, hierarchical clustering, and decision tree (DT) models. Results indicate that nanoparticles such as graphene oxide (GO), reduced graphene oxide (rGO), hydrolysis lignin, and calcium carbonate improve mechanical properties, with MOR values of 27.38–52.65 MPa and MOE of 2591.6–4680 MPa, meeting EN312 load-bearing standards. Zinc oxide nanoparticles yield superior dimensional stability by achieving a low TS of 9.33%. However, according to the American National Standard for Particleboard (ANSI/A208.1-1999), most nanoparticle boards produced met general-purpose standards except for WA and TS, which exceeded the maximum limits of 8% and 3%, respectively. Only crosslinked chitosan and zinc oxide nanoparticle panels meet the minimum requirements for TS (17%) and the maximum MOR (11.00 MPa) and MOE (1,800.00 MPa) for general purposes in dry conditions (furniture and interior fitments) according to the Brazilian standard (ABNT NBR). The Pearson correlation analysis reveals a strong relationship between board properties (R = 0.94 for WA–TS; R = 0.93 for MOR–MOE), confirming that nanoparticle treatments enhance performance while maintaining inherent material behavior. Hierarchical clustering grouped nanoparticles by performance: zinc oxide and chitosan+UF+epoxy formed a cluster with the lowest WA and TS, indicating optimal dimensional stability, while GO, rGO, and chitosan-based composites clustered with moderate values. For mechanical properties, APTES-modified nanocellulose, aluminum oxide, and zinc oxide formed a high-performance cluster (high MOR, MOE, IB). DT algorithms demonstrated high predictive accuracy (R2=0.92 for WA-TS, 0.96 for MOR-MOE, and 0.80 for IB-MOE), identifying critical thresholds: WA below 29.73% corresponded to minimal TS (9.94%), MOR above 38.18 MPa led to MOE above 3598.86 MPa, and IB above 0.88 MPa corresponds to MOE greater than 2,747.99 MPa. This data-driven framework enables targeted nanoparticle selection to fabricate engineered wood products and can be included in industry quality control standards to advance sustainable material development through ML-guided optimization.
评估纳米颗粒板物理力学性能的机器学习算法的性能
纳米颗粒显著提高了木质材料的性能,特别是刨花板和木板。本文分析了纳米颗粒集成在板材生产中的二手数据,旨在评估物理(吸水率(WA)和厚度膨胀(TS))与力学(断裂模量(MOR)、弹性模量(MOE))之间的关系;和内部键(IB)强度)特性,并使用机器学习(ML)算法预测性能。这些算法包括Pearson相关、分层聚类和决策树(DT)模型。结果表明,氧化石墨烯(GO)、还原氧化石墨烯(rGO)、水解木质素和碳酸钙等纳米颗粒均改善了复合材料的力学性能,MOR值为27.38 ~ 52.65 MPa, MOE值为2591.6 ~ 4680 MPa,符合EN312承载标准。氧化锌纳米颗粒具有优异的尺寸稳定性,TS低至9.33%。然而,根据美国刨花板国家标准(ANSI/A208.1-1999),生产的纳米颗粒板除WA和TS分别超过8%和3%的最大限值外,大多数都符合通用标准。根据巴西标准(ABNT NBR),只有交联壳聚糖和氧化锌纳米颗粒板符合干燥条件下一般用途(家具和室内装修)的最低TS(17%)和最大MOR (11.00 MPa)和MOE (1,800.00 MPa)的最低要求。皮尔逊相关分析显示,董事会性质之间存在很强的相关性(WA-TS的R = 0.94;R = 0.93(莫尔- moe),证实纳米颗粒处理在保持材料固有性能的同时提高了性能。纳米颗粒的性能分层聚类:氧化锌与壳聚糖+UF+环氧树脂形成的聚类WA和TS最低,尺寸稳定性最佳,而氧化石墨烯、还原氧化石墨烯和壳聚糖基复合材料的聚类值中等。在机械性能方面,aptes修饰的纳米纤维素、氧化铝和氧化锌形成了高性能簇(高MOR、MOE、IB)。DT算法具有较高的预测精度(WA-TS的R2=0.92, moor -MOE的R2= 0.96, IB-MOE的R2= 0.80),识别出临界阈值:WA低于29.73%对应最小TS (9.94%), MOR高于38.18 MPa导致MOE高于3598.86 MPa, IB高于0.88 MPa对应MOE大于2,747.99 MPa。这种数据驱动的框架使有针对性的纳米颗粒选择能够制造工程木制品,并且可以包括在行业质量控制标准中,通过机器学习指导的优化来推进可持续材料的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信