P. Parodi , S. Boccelli , F. Bariselli , T.E. Magin
{"title":"Pantera: A PIC-MCC-DSMC software for the simulation of rarefied gases and plasmas","authors":"P. Parodi , S. Boccelli , F. Bariselli , T.E. Magin","doi":"10.1016/j.softx.2025.102244","DOIUrl":null,"url":null,"abstract":"<div><div>We present <span>Pantera</span>, an open-source, parallel, particle-based code for the simulation of rarefied gases and plasmas. The code uses the Particle-in-Cell (PIC) method for the solution of ionized flows in the electrostatic approximation, coupled to the Direct Simulation Monte Carlo (DSMC) method for particle–particle interactions, and Monte Carlo Collisions (MCC) technique for the interaction of particles with a fixed background. It uses unstructured grids, which allows for the representation of complex geometries. Various models are available for elastic collisions, reactions, and gas–surface interaction. Semi- and fully-implicit, energy-conserving PIC schemes are available, as well as a Boltzmann-fluid model for electrons, to improve numerical stability and speed up the simulations. The code is designed to be easily understandable and extensible to include new models and algorithms for aerospace applications and beyond.</div></div>","PeriodicalId":21905,"journal":{"name":"SoftwareX","volume":"31 ","pages":"Article 102244"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SoftwareX","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352711025002110","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
We present Pantera, an open-source, parallel, particle-based code for the simulation of rarefied gases and plasmas. The code uses the Particle-in-Cell (PIC) method for the solution of ionized flows in the electrostatic approximation, coupled to the Direct Simulation Monte Carlo (DSMC) method for particle–particle interactions, and Monte Carlo Collisions (MCC) technique for the interaction of particles with a fixed background. It uses unstructured grids, which allows for the representation of complex geometries. Various models are available for elastic collisions, reactions, and gas–surface interaction. Semi- and fully-implicit, energy-conserving PIC schemes are available, as well as a Boltzmann-fluid model for electrons, to improve numerical stability and speed up the simulations. The code is designed to be easily understandable and extensible to include new models and algorithms for aerospace applications and beyond.
期刊介绍:
SoftwareX aims to acknowledge the impact of software on today''s research practice, and on new scientific discoveries in almost all research domains. SoftwareX also aims to stress the importance of the software developers who are, in part, responsible for this impact. To this end, SoftwareX aims to support publication of research software in such a way that: The software is given a stamp of scientific relevance, and provided with a peer-reviewed recognition of scientific impact; The software developers are given the credits they deserve; The software is citable, allowing traditional metrics of scientific excellence to apply; The academic career paths of software developers are supported rather than hindered; The software is publicly available for inspection, validation, and re-use. Above all, SoftwareX aims to inform researchers about software applications, tools and libraries with a (proven) potential to impact the process of scientific discovery in various domains. The journal is multidisciplinary and accepts submissions from within and across subject domains such as those represented within the broad thematic areas below: Mathematical and Physical Sciences; Environmental Sciences; Medical and Biological Sciences; Humanities, Arts and Social Sciences. Originating from these broad thematic areas, the journal also welcomes submissions of software that works in cross cutting thematic areas, such as citizen science, cybersecurity, digital economy, energy, global resource stewardship, health and wellbeing, etcetera. SoftwareX specifically aims to accept submissions representing domain-independent software that may impact more than one research domain.